
INMAS 2021, Modeling & Optimization Problems: Session 3.

1. In the lecture, we learned that simplex starts at a vertex of the feasible
region and travels to adjacent vertices. However, what do we do if we
don’t know any feasible solutions? It is possible to find a feasible solution
by solving a different LP. Assume that we are given an LP in standard
form:

max cᵀx

s.t.

Ax ≤ b
x ≥ 0

Here, the vector b may contain some negative components, in which case
it is not there is no obvious feasible solution. Formulate a new LP such
that:

• The new LP always has a feasible solution, and you can give a simple,
closed form for that solution.

• The new LP takes an objective value of zero if the original LP is
feasible.

• The new LP has an objective value of greater than zero if the original
LP is infeasible.

• Given a solution to the new LP with objective value of zero, you can
construct a feasible solution to the original LP.

This LP can be solved to identify a feasible solution.

Solution. One such LP is as follows:

max
n∑
i=1

−yi

s.t.

Ax− y ≤ b
x ≥ 0

y ≥ 0

Here, the vector x represents a solution to the original LP. The variable yi
represents the amount by which the solution x exceeds constraint i. We
will show that this LP satisfies all four desired properties:
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• There is always a feasible solution. One example is x = 0 and y is
defined so that

yi =

{
−b if b ≤ 0

0 otherwise.

• Suppose that the original LP has a feasible solution x̃. We must show
that the new LP has optimal value of zero. The solution given by
x = x̃, y = 0 is feasible for the new LP. The objective of this solution
is zero, and no solution can have a an objective of greater than zero
because the vector y is restricted to take non-negative values.

• Suppose that the original LP is infeasible, and let us show that the
new LP will have an optimal value of less than zero. As discussed
in the lecture, for any LP there are three exhaustive and mutually
exclusive options: the LP can have an unbounded objective value, the
LP can be infeasible, or the LP has an optimal. For the new LP, the
objective value cannot be greater than zero, so it is not unbounded,
and there is a feasible solution. Therefore, the LP must have an
optimal solution (x∗, y∗). If y∗ were identically zero, then x∗ would
be a feasible solution for the original LP. By assumption in this case,
the original LP is feasible. Thus, y∗ must have some strictly positive
component. Then, the objective value must be less than zero.

• Suppose there is a solution (x∗, y∗) with objective value zero. Then,
it must be true that y∗ is identically zero. Then we can see that x∗

is a feasible solution for the original LP.

2. The pigeonhole principle states that the problem, “Place n + 1 pigeons
into n holes so that no two pigeons share a hole,” has no solution.

(a) Formulate this problem as an IP using the following two types of
constraints:

i. Those that enforce that every pigeon must be given a hole.

ii. Those that enforce that, for each pair of pigeons, at most one of
these pigeons can be assigned to a given hole.

Show that the LP relaxation of this formulation is feasible.

Solution. Decision variables:

xij − binary; 1 if pigeon i is assigned to hole j

Constraints:

• Every pigeon must be given a hole:

n∑
j=1

xij = 1 for all i in 1, . . . , n+ 1
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• For each pair of pigeons, at most one of these pigeons can be
assigned to a given hole:

xij + xkj ≤ 1 for all pairs {i, k} in 1, . . . n+ 1; for j in 1, . . . , n

An example feasible solution: set xij =
1

n
for all i and all j.

(b) Alternatively, formulate this problem as an IP using the following
two types of constraints:

i. Those that enforce that every pigeon must be given a hole.

ii. Those that enforce that every hole is assigned to at most one
pigeon.

Show that the LP relaxation of this formulation is infeasible.

Solution. Decision variables:

xij − binary; 1 if pigeon i is assigned to hole j

Constraints:

• Every pigeon must be given a hole:

n∑
j=1

xij = 1 for all i in 1, . . . , n+ 1

• Every hole is assigned to at most one pigeon:

n+1∑
i=1

xij ≤ 1 for j in 1, . . . , n

To show that this is infeasible, by summing all constraints of the first
constraint, we see that it must be true:

n+1∑
i=1

n∑
j=1

xij = n+ 1

However, summing across the second constraints:

n+1∑
i=1

n∑
j=1

xij ≤ n

This is a clear contradiction, so there can be no feasible solution.
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3. In the lecture, we saw two formulations for the same facility location
problem. In fact, one is stronger than the other. Formulation A has the
following constraints:

n∑
j=1

xij = 1 for all i

xij ≤ yj for all i, j

x, y ≥ 0

xij , yj ∈ Z for all i, j

while Formulation B has the following constraints:

n∑
j=1

xij = 1 for all i

n∑
i=1

xij ≤ nyj for all j

x, y ≥ 0

xij , yj ∈ Z for all i, j

Identify which formulation is stronger than the other, and prove it. (As-
sume that there are at least two possible facility locations; otherwise the
problem is trivial and both LP relaxations are the same.)

Solution. Formulation A is stronger than formulation B. This is true be-
cause if

xij ≤ yj for all i, j

Then, summing these constraints for i = 1, . . . , n gives us:

n∑
i=1

xij ≤ nyj for all i, j

Thus, any solution that satisfies the LP relaxation of Formulation A will
also satisfy the LP relaxation of Formulation B.

Next, define a solution as follows, Let xi1 = 1 for all i = 1, . . . (n − 1);

xn2 = 1; xij = 0 for all other i, j. Let y1 = (n−1)
n and y2 = 1

n . Let yj = 0
for all other j. Note that this solution is feasible for the LP relaxation of
Formulation B, but not for Formulation A.

4. Consider the following continuous knapsack problem:

max
x

n∑
i=1

cixi
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s.t.

n∑
i=1

aixi ≤ b

0 ≤ x ≤ 1

where ai and ci are positive numbers for each i, and b is a positive constant.
Prove that the following greedy algorithm provides an optimal solution to
this LP:

(a) Set xi = 0 for all i. Set r = b; here b will represent the remaining
weight. Let I = {1, . . . , n}; here I will represent the set of remaining
items.

(b) Let t = max
i∈I

ci/ai.

(c) Set xt = min{1, r/at}.
(d) Remove t from I.

(e) Set r = r − atxt.
(f) If r = 0, then return x. Otherwise, go back to step (b).

Intuitively, this algorithm takes as much as possible of the item with the
highest value-to-weight ratio until we have reached the maximum weight.
Hint: form a feasible dual solution that achieves the same objective.

Solution. The dual is given by:

min
λ,µ

bλ+

n∑
i=1

µi

subject to:

aiλ+ µ ≥ ci
λ, µ ≥ 0

where λ is a single variable and µ is a vector of n variables. Assume
without loss of generality that c1/a1 ≥ c2/a2 ≥ . . . ≥ cn/an (this can
always be achieved by relabeling variables). First, consider the case that
a1 ≥ b. In this case, the solution produced by the greedy algorithm is
x1 = b/a1 with all other variables equal to zero. An optimal dual solution
is given by λ = c1/a1 and µ = 0. It is straightforward to verify that the
objectives of the primal solution and dual solution are equal, and that the
primal solution is feasible. The dual solution is feasible because

aiλ+ µ = ai(c1/a1) = ci

(
c1/a1
ci/ai

)
≥ ci
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Now, consider the case that a1 < b. Let τ = max{i ∈ [n] |
∑τ
i=1 ai < b}.

By assumption, since a1 < b, the value τ exists. Verify that the greedy
algorithm produces the following solution:

xi =


1 if i ≤ τ
b−

∑τ
i=1 ai

aτ+1
if i = τ + 1

0 if i > τ + 1

Verify that this solution is feasible for the primal problem. Define a dual
solution as follows:

λ =
ct+1

at+1

µi =

ci − ai
ct+1

at+1
if i ≤ t

0 otherwise

It is straightforward to verify that the dual solution achieves the same
objective as the primal solution. It is clear that λ ≥ 0; we must prove that
µ ≥ 0. Let there be some i ≤ t; then be assumption, ci/ai ≥ ct+1/at+1.
This implies that

ci − ai
ct+1

at+1
≥ 0

for any i ≤ t. This in turn implies that µ ≥ 0. Now, we must show that

aiλ+ µ ≥ ci

for each i. If i ≤ t, then

aiλ+ µ = ai
ct+1

at+1
+ ci − ai

ct+1

at+1
= ci

If i ≥ t+ 1, then

aiλ+ µ = ai(ct+1/at+1) = ci

(
ct+1/at+1

ci/ai

)
≥ ci

This completes the proof.

5. Solve the following binary knapsack problem using branch-and-bound:

max
x

17x1 + 10x2 + 25x3 + 17x4

s.t.

4∑
i=1

5x1 + 3x2 + 8x3 + 7x4 ≤ 12

xi ∈ {0, 1}
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Solution. We start with a tree consisting of only the root node:

Root

The solution at the root node is given by (1, 1, 0.5, 0) with objective 39.5.
Since x3 is the only variable that takes a fractional value in the solution,
it makes sense to branch on x3. We add the branches x3 = 0 and x3 = 1,
giving us the tree:

Root, UB=39.5

S1 S2

x3 = 0 x3 = 1

We could choose either the node S1 or S2 to evaluate; let’s evaluate S1.
The solution at S1 is given by (1, 1, 0, 4/7) which has objective of 257/7
or approximately 36.7. It makes sense to branch on x4, giving us the tree:

Root, UB=39.5

S1, UB=36.7 S2

S3 S4

x3 = 0 x3 = 1

x4 = 0 x4 = 1

Now, we can choose the node S2, S3, or S4 to evaluate. Let’s choose S2.
The solution at S2 is given by (4/5, 0, 1, 0). This has an objective value of
142/5 or 38.6. It makes sense to branch on x1, which gives us the tree:

7



Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3 S4 S5 S6

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

We can now evaluate any of the nodes S3, S4, S5, S6. Let’s evaluate S3.
The optimal solution here is (1, 1, 0, 0), which is feasible and achieves ob-
jective value of 27. This gives us a lower bound. There is no need to add
more branches. The tree is now:

LB=27, Best= (1, 1, 0, 0)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4 S5 S6

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

We can now evaluate S4, S5 or S6. Let’s choose S4. The optimal solution
at S4 is (1, 0, 0, 1). This is a feasible solution with objective value of 34. We
update the lower bound and the best solution, and there is no branching
needed at this node. The tree is now:
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LB=34, Best= (1, 0, 0, 1)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4, Obj=34 S5 S6

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

We now can evaluate node S5 or S6. Let’s choose S5. This gives us the
solution (0, 1, 1, 1/7) with objective value of 262/7 or approximately 37.4.
We branch on variable x4, giving us the tree:

LB=34, Best= (1, 0, 0, 1)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4, Obj=34 S5, UB=37.4 S6

S7 S8

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

x4 = 0 x4 = 1

We can now evaluate S7 or S8. Let’s evaluate S7. This gives us the
solution (0, 1, 1, 0) with objective value of 35. This solution is feasible,
and is better than the current best, so we update the lower bound and the
best solution. There is no need to branch at this node. The tree is now:
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LB=35, Best= (0, 1, 1, 0)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4, Obj=34 S5, UB=37.4 S6

S7, Obj=35 S8

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

x4 = 0 x4 = 1

We can now evaluate S6 or S8. Let’s evaluate S6. This node is infeasible,
so we do not branch further on this node. The tree is now:

LB=35, Best= (0, 1, 1, 0)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4, Obj=34 S5, UB=37.4 S6, Inf.

S7, Obj=35 S8

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

x4 = 0 x4 = 1

We now evaluate S8. The solution at this node is (2/5, 1, 0, 1), which
achieves an objective value of 169/5 or 33.8. Since our current lower
bound is larger than this upper bound, there is no need to branch further
at this node. The tree is now:
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LB=35, Best= (0, 1, 1, 0)

Root, UB=39.5

S1, UB=36.7 S2, UB = 38.6

S3, Obj = 27 S4, Obj=34 S5, UB=37.4 S6, Inf.

S7, Obj=35 S8, UB=33.8

x3 = 0 x3 = 1

x4 = 0 x4 = 1 x1 = 0 x1 = 1

x4 = 0 x4 = 1

There are no nodes left to explore, so the best solution is (0, 1, 1, 0) with
an objective value of 35.
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