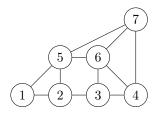
INMAS 2021, Modeling & Optimization Problems: Session 2.

- 1. Show that the following integer programs all have the same set of feasible solutions:
 - (a) $97x_1 + 32x_2 + 25x_3 + 20x_4 \le 139$ $x_i \in \{0, 1\}$ (b) $2x_1 + x_2 + x_3 + x_4 \le 3$ $x_i \in \{0, 1\}$ (c) $x_1 + x_2 + x_3 \le 2$ $x_1 + x_2 + x_4 \le 2$ $x_1 + x_3 + x_4 \le 2$ $x_i \in \{0, 1\}$
- 2. Suppose that you are interested in choosing a set of investments {1,...,7}. Model the following constraints:
 - (a) You cannot invest in all of them.
 - (b) You must choose at least one of them.
 - (c) Investment 1 cannot be chosen if investment 3 is chosen.
 - (d) Investment 4 can be chosen only if investment 2 is also chosen.
 - (e) You must choose either both investments 1 and 5 or neither.
 - (f) You must choose either at least one of the investments 1,2,3 or at least two investments from 2,4,5,6.
- 3. A graph (V, E) is called a planar graph if it can drawn in a two-dimensional plane so that the edges E intersect only at the vertices V of the graph. A graph coloring is an assignment of colors to vertices such that the endpoints of each edge must be different colors. There is a theorem that states that any planar graph has a graph coloring using at most 4 colors. Formulate an integer program that identifies a coloring of a planar graph that uses the minimum number of colors. Implement this IP in Gurobi, and apply your implementation to the following graph:



- 4. Formulate the following as constraints to mixed integer programs:
 - (a) $u = \max\{x_1, x_2\}$ assuming that $0 \le x_j \le C$ for j = 1, 2.
 - (b) $v = |x_1 x_2|$ assuming that $0 \le x_j \le C$ for j = 1, 2.
 - (c) Let x be an n-dimensional vector of integer decision variables, and let x^* be an integral point in \mathbb{R}^n ; model the constraint $x \neq x^*$ under the assumption that $0 \leq x_j \leq C$ for each j.
- 5. Suppose that you have a single machine, and you have several tasks to perform on this machine. The machine can only process one task at a time, but you may choose the order in which the tasks are performed. Each of these tasks has a deadline. Let t_j be the time required to complete task j, let d_j be the deadline for task j. There is a penalty for missing deadlines. Specifically, if task j is completed before time t_j , there is no penalty, while if task j is completed at some time $\tau > d_j$, then the penalty is $p_j (\tau d_j)$ for some constant p_j .

Hint: define variables:

,

$$x_j = \begin{cases} 1 & \text{the time at which job } j \text{ is completed.} \\ 0 & \text{otherwise.} \end{cases}$$

Then, note that either $x_j \ge x_i + t_j$ or $x_i \ge x_j + t_i$; where the former holds if task *i* is placed before task *j* and the latter holds if task *i* is placed after task *j*.

- (a) Formulate an integer program that identifies the optimal sequence of tasks.
- (b) Using Gurobi, solve the following instance:

Task	Processing time	Deadline	Penalty (per minute late)
1	5 minutes	60 minutes	\$10
2	10 minutes	20 minutes	\$18
3	17 minutes	32 minutes	\$14
4	8 minutes	27 minutes	\$89
5	9 minutes	44 minutes	\$22
6	14 minutes	52 minutes	\$37
7	28 minutes	$77 \ \mathrm{minutes}$	\$46