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Solving LPs

How do solvers work?

I Several methods

I One of the oldest methods is simplex method

I Simplex method still widely in use today



Simplex method I

Important facts about LPs:

I The feasible region of an LP is a polyhedron.

I The optimal solution is a vertex of the polyhedron (if it exists).
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Simplex method II

Start at some vertex:
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Simplex method III

See if any neighboring vertex has a better objective (this can be
done in O(m) time where m is number of constraints)
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Simplex method IV

If a neighboring vertex has a better objective move to that vertex
(this can be done in O(mn) time). If not, then solution is optimal.
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How good is the Simplex Algorithm?

I The number of vertices on a polygon can be exponential in
the number of constraints. For example:

0 ≤ xi ≤ 1

for i = 1, . . . n has 2n constraints and 2n vertices.

I In some cases, the simplex algorithm can visit every vertex!

I These types of instances are extremely unlikely to occur
naturally.

I Simplex is very effective in practice.



Alternatives to Simplex

Interior point algorithms.

I Solutions follow a path in interior of polyhedron.

I Polynomial time.

I On some instances (especially extremely large, sparse
instances), better than simplex.

I Also available in Gurobi and other commercial solvers.

I Linear Optimization by Bertsimas and Tsitsiklis

I Convex Optimization by Boyd and Vandenbergh



Duality I

LP methods often find “good” solution much faster than optimal
solution.

I Can save a lot of time if we stop once we are “close” to
optimal.

I How do we know we are close to optimal?

Time

Solution Quality



Duality II

Every LP has a dual:

Primal Dual

max
x

cᵀx min
λ

bᵀλ

Ax ≤ b λᵀA ≥ c

x ≥ 0 λ ≥ 0



Duality III

Weak duality:

I Let x be feasible solution to primal

I Let λ be feasible solution to dual.

I Then cᵀx ≤ bᵀλ.

I Proof: look at λᵀAx .
I (λᵀA)x ≥ cᵀx since x ≥ 0 and λᵀA ≥ c .
I λᵀ(Ax) ≤ bᵀλ since λ ≥ 0 and Ax ≤ b.



Duality IV

Strong duality:

I If either the primal or the dual has an optimal solution, then
both problems do and the objective values are equal.



Duality V

Visualization:

cᵀx

cᵀx∗ = bᵀλ∗
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Duality VI

Implications:

I If objective of dual solution is close to that of primal solution,
then both solutions are almost optimal.

I If objectives equal, then both solutions are optimal.

I Simplex and interior point methods produce optimal primal
and dual solutions.

I Interior point methods typically maintain feasible primal and
dual solutions in every iteration.

I Simplex does not produce a feasible dual solution until
iteration in which optimal solution is found.



Duality VII

Example primal problem:

max 4x + 5y + z

s.t.

2x + 3y ≤ 60

x + 2y ≤ 20

y + z ≤ 10

x + y + z ≤ 15

x , y , z ≥ 0



Duality VIII

Example dual problem:

min 60λ1 + 20λ2 + 10λ3 + 15λ4

s.t.

2λ1 + λ2 + λ4 ≥ 4 [x ]

3λ1 + 2λ2 + λ3 + λ4 ≥ 5 [y ]

λ3 + λ4 ≥ 1 [z ]

λ ≥ 0



Duality: Beyond LPs

I Many types of optimization problems admit versions of
duality, both strong and weak.

I Many convex optimization problems admit strong duality (see
Convex Optimization, Boyd and Vandenberghe)

I Integer linear programs admit weak duality (see Integer
Programming, Wolsey)

I Integer linear programs can also admit strong duality, but this
is more complicated and less frequently used than in LPs (e.g.
Williams 1996. “Duality in mathematics and linear and
integer programming.” Journal of Optimization Theory and
Applications. 90:2, 257-278)



Solving IPs I

How do IP solvers work?

I Start with LP relaxation.

I LP relaxation replaces integer variables with continuous
variables.



Solving IPs II

MILP Feasible Region

x

y
LP Relaxation
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Solving IPs III

Key facts:

I For minimization problem, optimal value of LP relaxation is a
lower bound.

I For maximization problem, optimal value of LP relaxation is
an upper bound.

I If optimal solution to LP relaxation is integral, then it is also
an optimal solution to the IP



Solving IPs IV

Get solution to LP relaxation:

x

y

It’s not integral. Now what?



Branch-and-bound I

Option A: Branch.

I Pick a variable x with fractional value v .

I Divide feasible region into two smaller regions:

1. x ≤ bvc
2. x ≥ dve

I Repeat procedure for smaller regions until solution is acquired
for each region.

I See which solution is better.



Branch-and-bound II

Branching on x :

x

y

Note that in this case, both smaller regions have only integral
points. Thus, simplex will produce integral values for those points.



Branch-and-bound III

This is usually arranged as a tree.

I The root node corresponds with the entire problem.

I Every time we branch, we create two children nodes.

I We will prune nodes that we can prove are suboptimal.



Branch-and-bound IV

Example: suppose that we have some IP with 5 variables with
objective:

max
x

5∑
i=1

xi

The exact constraints will not be important for this example.



Branch-and-bound V

Our tree will start with a single node, corresponding to entire
problem:

Root

We solve the LP relaxation, and we get the following solution:

x1 x2 x3 x4 x5
10.5 0 11.5 5.5 3

I The objective value is 30.5.

I The objective of the LP relaxation is an upper bound on the IP

I We associate this upper bound with the root node:

Root, UB=30.5

We choose a variable to branch on; let’s choose x1.



Branch-and-bound VI

We add two nodes, x1 ≤ 10 and x1 ≥ 11:

Root, UB=30.5

S1 S2

x1 ≤ 10 x1 ≥ 11

We now have a choice of which node to evaluate next. Let’s
choose S1.



Branch-and-bound VII

We solve the the LP relaxation of the subproblem with x1 ≤ 10,
which gives us

x1 x2 x3 x4 x5
10 4.5 6 6 2.5

I Again, use the objective value 29 as an upper bound
associated with this node.

I Choose some variable to branch on; suppose we choose x2.

I Add child nodes corresponding to x2 ≤ 4 and x2 ≥ 5.



Branch-and-bound VIII

We now have the tree:

Root, UB=30.5

S1,UB = 29 S2

S3 S4

x1 ≤ 10 x1 ≥ 11

x2 ≤ 4 x2 ≥ 5

We choose another node to evaluate; let’s choose S2.



Branch-and-bound IX

We solve the LP of the subproblem with x1 ≥ 11, which gives us:

x1 x2 x3 x4 x5
14 0 3 3 6

This is a feasible solution.

I We do not need to branch further from S2.

I The value 26 is the optimal value of the subproblem S2.

I A feasible solution gives us a lower bound for the entire IP; we
store both this solution and the objective value.



Branch-and-bound X

We now have the tree:

LB = 26 Root, UB=30.5

S1,UB = 29 S2, Obj = 26

S3 S4

x1 ≤ 10 x1 ≥ 11

x2 ≤ 4 x2 ≥ 5

Let’s evaluate the node S3. Suppose that



Branch-and-bound XI

We solve the LP of the subproblem with x1 ≤ 10 and x2 ≤ 4.

I Suppose that this LP is infeasible.

I Then, we can simply remove this node.

This gives us the tree:

LB = 26 Root, UB=30.5

S1,UB = 29 S2, Obj = 26

S3, Infeasible S4

x1 ≤ 10 x1 ≥ 11

x2 ≤ 4 x2 ≥ 5

Let’s evaluate the node S4.



Branch-and-bound XII

We solve the LP relaxation of the subproblem with x1 ≤ 10 and
x2 ≥ 5. Suppose that we get the following solution:

x1 x2 x3 x4 x5
10 5 2.5 2.5 1.5

This has an objective value of 21.5

I This is lower than the current lower bound of 26

I We can be certain that further branching will not produce an
optimal solution.

I We can prune this node.



Branch-and-bound XIII

The completed tree:

LB = 26 Root, UB=30.5

S1,UB = 29 S2, Obj=26

S3, Infeasible S4,UB = 21.5

x1 ≤ 10 x1 ≥ 11

x2 ≤ 4 x2 ≥ 5

The optimal objective value is 26, which we found at node S2.



Branch-and-bound XIV

In summary:

I Choose a node.

I Solve the LP.

I If the LP is infeasible, there is no need to branch.

I If the solution is integral, you have solved the subproblem and
there is no need to branch.

I If the LP objective is higher than the current LB, then the
subproblem is suboptimal and there is no need to branch.

I Otherwise, the LP has a fractional optimal solution; choose a
variable and branch, creating two children.



Branch-and-bound Effectiveness I

How effective is branch-and-bound?

I Branch-and-bound is guaranteed to reach an optimal solution
eventually.

I However, in the worst case, branch-and-bound may require
enumerating every solution (or nearly every solution).

I In practice, branch-and-bound is very effective for many
problems.

I For a while, branch-and-bound was the dominant method of
solving integer programs.



Cut Generation I

Option B: Cut generation

I Add a constraint that “cuts” the fractional point.

I Make sure not to cut any feasible integral solutions.



Cut Generation II

Cut generation:

x

y



Cut Generation III

There are many ways of generating cuts:

I Some types of cutting planes can be applied to any MILP
problem.

I Some cutting planes apply only to specific constraints.



Effectiveness of cut generation

How effective are cut generation methods?

I Some cut generation methods are guaranteed to reach an
optimal solution eventually.

I However, these methods tend to converge very slowly in
practice

I It is difficult to solve practical problems purely with cut
generation.



Branch-and-cut

Branch-and-bound can be combined with cutting plane algorithms:

I At each node, we look to add some cutting planes before we
branch.

I This is currently the method used by the most effective
integer programming solvers.



Strong and weak formulations I

Consider same IP. Consider these formulations:

x

y

x

y



Strong and weak formulations II

x

y

x

y

Left formulation:

I Constraints very close to integral points.

I Less possible fractional solutions.

I Will likely require less branching and/or cut generation.



Strong and weak formulations III

x

y

x

y

Right formulation:

I Constraints not as close to integral points.

I More possible fractional solutions.

I Will likely require more branching and/or cut generation.



Strong and weak formulations IV

Definition of strength:

I If polyhedron associated with formulation A strictly contains
the polyhedron associated with formulation B, then A is
weaker than B and B is stronger than A

To show that a formulation B is stronger than A:

I Show that every feasible solution from LP relaxation of B is
feasible for LP relaxation of A

I Show that LP relaxation A has some feasible solution that is
infeasible for the LP relaxation of B.



Strong and weak formulations V

Example:

I We have a set with n items

I If we select one item from the set then we cannot select any
other item from the set

Formulation A

xi + xj ≤ 1 for all i , j

x ≥ 0

Formulation B:

n∑
i=1

xi ≤ 1

x ≥ 0



Strong and weak formulations VI

Formulation B is stronger than formulation A.

I If
∑n

i=1 xi ≤ 1 and x ≥ 0 then xi + xj ≤
∑n

i=1 xi ≤ 1 for any i
and j .

I So, every solution to LP relaxation of B is a solution to LP
relaxation of A.

I The solution in which xi = 1/2 for all i is feasible for LP
relaxation of A but not for LP relaxation of B.



Strong and weak formulations VII

If every vertex of LP relaxation is integral, then you have found
convex hull of integral solutions.

I Simplex produces optimal solution.

I This is the unique strongest formulation.



Strong and weak formulations VIII

Rule of thumb: look for as strong a formulation as possible!

I Caveat: sometimes stronger formulations require much more
constraints, which can slow down solution.

I Usually, strength of formulation is more important than size of
formulation.


