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SM1. Proof of Lemma 4.1.
Statement of Lemma 4.1. Let H be an acyclic F-graph. Then H has disjoint

reachability if and only if {U(w;H) : w ∈W} is a collection of disjoint sets for every
edge e = (v,W ) in E(H).

Proof of Lemma 4.1. First we prove the forward direction, that if H has disjoint
reachability then {U(w;H) : w ∈ W} is a collection of disjoint sets for every edge
e = (v,W ) in E(H). In fact, we prove the contrapositive. Assume that there is some
edge e = (v,W ) where {U(w,H) : w ∈ W} is not a collection of disjoint sets. Then
we can produce a compath that is not an out-tree. By the assumption, there exists
some ρ ∈ V (H) and some distinct w1, w2 ∈ W such that ρ �H w1 and ρ �H w2. In
particular, let ρ be a minimal node such that ρ �H w1 and ρ �H w2. Let P1 be the
path from w1 to ρ and let P2 be the path from w2 to ρ. We claim that P ∗ = e+P1+P2

is a compath. It is clear that v is the unique minimal node of P ∗. Next, we need to
show that each node has at most one outgoing edge. Suppose that some node u ∈ P ∗
has two outgoing edges e1 and e2. Since the paths P1 and P2 start at nodes strictly
greater than v, it is clear that u 6= v. Consequently, e 6= e1 and e 6= e2, so these
edges must have come from P1 and P2. In any path each node has only one outgoing
edge, so one of the two edges is in P1 while the other edge is in P2. This implies that
u �H w1 and u �H w2, since w1 and w2 are the first nodes in the respective paths.
Since ρ is the final node of the path P1, then u �P ρ. We defined ρ to be a minimal
node such that ρ �H w1 and ρ �H w2, so in fact it must be true that u = ρ. However,
ρ has no outgoing edges in the path P1 or P2. This is a contradiction. Thus, there is
no node u ∈ P ∗ that has two outgoing edges e1 and e2. Thus, P is a compath. Next,
we show that ρ has two incoming edges in the compath P . Let η1 be the incoming
edge of ρ in P1 and let η2 be the incoming edge of ρ in P2. Suppose that η1 = η2,
and let y be the origin node of this edge. Then, it would be true that y �H w1 and
y �H w2 since w1 and w2 are the first nodes in their respective paths. It would also
be true that y ≺H ρ since there is a path from y to ρ consisting of the single edge
η1. However, this is a contradiction since by definition, ρ is a minimal node such that
ρ �H w1 and ρ �H w2. Thus, the node v has two incoming edges in the compath P .
We have now constructed a compath P of H that is not an out-tree, which completes
the proof of the forward direction.

In the opposite direction, suppose that H does not have disjoint reachability.
Then there exists some compath P such that some node u ∈ V (P ) has two distinct
incoming edges e1 = (v1,W1) and e2 = (v2,W2) in P . Let v0 be the starting node of
compath P . Let z be a maximal node preceding both v1 and v2 in P . That is, let z
be such that z ≺P v1 and z ≺P v2 and such that if y is another node where y ≺P v1
and y ≺P v2 then z 6≺P y. The existence of such a node is guaranteed by the fact that
v0 ≺P v1 and v0 ≺P v2. By definition of a compath, there are paths P1 and P2 in P
starting at z with destinations v1 and v2 respectively. Let w1 and w2 be the nodes
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immediately following z in the paths P1 and P2 respectively. Since P is a compath, z
has only one outgoing edge η in P . Since P1 and P2 are subgraphs of P , then w1 and
w2 must both be destination nodes of η. By the fact that w1 ≺P v1 and w2 ≺P v2, it
must be true that w1 is distinct from w2. Otherwise, it would be true that z ≺P w1,
w1 ≺P v1, and w1 ≺P v2; this contradicts the definition of z. Now, since v1 ≺H u and
w1 ≺H v1, we see that w1 ≺H u. Similarly, w2 ≺H u. Thus, both the set U(w1;H)
and U(w2;H) contain the node u. Then, {U(w;H) : w ∈ W} is not a collection of
disjoint sets when W is taken to be the destination nodes of η.

SM2. Notation. Here, we define notation that is used in several sections of the
online supplement. Let λ be a solution to a F-graph flow problem on some F-graph
H. We will let fe(λ) be the value of the variable fe in the solution λ for each edge e
in E(H). We will use the notation

F+(λ) := {e ∈ E(H) : fe(λ) > 0},

the set of edges that take positive flow in the solution λ. Similarly, we define

F 0(λ) := {e ∈ E(H) : fe(λ) = 0},

the set of edges that take zero flow in the solution λ. For a set of edges E we let `(E)
be the solution (not usually feasible) defined by

fe(`(E)) =

{
1 e ∈ E ,
0 otherwise.

For a subgraph S, we use the shorthand `(S) = `(E(S)).

SM3. Constructing Feasible Solutions. We present several lemmas that as-
sist in the construction and modification of feasible solutions. These lemmas will be
useful in the proof of subsequent results. In this section, we use the notation described
in section SM2.

Lemma SM3.1 states that the subgraph induced by the edges greater than some
node v in a spanning in-forest X is always a maximal compath.

Lemma SM3.1. Let X be a spanning in-forest of an ADF-hypergraph H, and let
v be any node in V (H). Then U(v;X) is a maximal compath.

Proof. The subnetwork U(v;X) is clearly a compath since v is the unique minimal
node of U(v;X), and every node has exactly one outgoing edge in X. We can also
show that it is maximal. Let e∗ = (x,W ) be a maximal edge of E(U(v;X)) in X
and suppose that e∗ is not a maximal edge in H. In this case, there exists some edge
ẽ = (x′,W ′) in E(H) such that there is a path P from some node w in W to x′.
However, since x′ ∈ V (H) and X is a spanning in-forest, then there exists some edge
e′ in E(X) whose origin node is w′. Then, e′ �X e∗, which is a contradiction because
e∗ is a maximal edge in X. Thus, U(v;X) is a maximal compath.

Lemma SM3.2 allows the creation of larger compaths from smaller compaths.

Lemma SM3.2. Let e = (v,W ) be any edge of an ADF-graph H. For each
w ∈ V (H) ∩ W , let Pw be a compath beginning at w. Then the subgraph P ∗ =
e +

∑
w∈V (H)∩W

Pw is a compath. Furthermore, P ∗ is maximal if and only if each Pw

is maximal.
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Proof. It is easy to see that v is the unique minimal node of P ∗. It follows from
Lemma 4.1 that the paths Pw for w ∈ V ∩W cannot have any edges or vertices in
common, which in turn implies that each node of P ∗ has at most one outgoing edge.
It is also clear that an edge is a maximal edge of P ∗ if and only if it is a maximal
edge of Pw for some w ∈ V (H)∩W . This immediately implies that P ∗ is maximal if
and only if each Pw is maximal.

Lemma SM3.3 states that there is always a compath contained in the edges that
take positive flow in a feasible solution to a flow problem.

Lemma SM3.3. Let φ be any feasible solution to an F-graph flow problem on some
ADF-graph H, and let e = (v,W ) be an edge of F+(φ). Then there exists a maximal
compath P in F+(φ) starting at v whose first edge is e.

Proof. Induction. This is clearly true for any maximal edge e, because the edge
itself is a maximal compath. Suppose that there exists some edge e = (v,W ) in F+(φ)
such that the property is true for all edges e′ � e; we will show that the property is
also true for e. If W ∩ V (H) is empty, then the edge is maximal and the property is
again satisfied. Suppose W ∩ V (H) is not empty. Since there is positive flow on the
edge e, then for each vertex w ∈ W ∩ V (H) there must exist some edge ηw outgoing
from w such that ηw has positive flow; otherwise, the conservation constraint would
not be satisfied at w. By the induction hypothesis, there is a maximal compath Pw
starting at w. Then, by Lemma SM3.2, e+

∑
w∈V (H)∩W

Pw is a maximal compath.

Lemma SM3.4 states that adding a unit of flow along compath and while removing
a unit of flow along a compath that starts at the same node preserves feasibility, as
long as edge capacities are not violated.

Lemma SM3.4. Let φ be an integral feasible solution to an F-graph flow problem
on some ADF-graph H. Let P ′ be any maximal compath in F+(φ) starting at some
node v of V (H). Let P be any maximal compath starting at the same node v such
that

fe(φ) ≤ ae − 1

for any edge e in (E(P ) ∩ C ) \ E(P ′). Then φ+ `(P )− `(P ′) is an integral feasible
solution. Furthermore, E(`(P )) ⊆ F+(φ+ `(P )− `(P ′)).

Proof. Note that the variables in `(P ) and `(P ′) only appear in the conservation
constraints for nodes that fall in the paths P and P ′, the edge capacity constraints
for edges in these paths, and the non-negativity constraints for edges in these paths.
Since P ′ is a compath within the edges of φ that have positive flow and the solution
is integral, then all variables of φ− `(P ′) take positive values, which in turn implies
that all variables of φ+ `(P )− `(P ′) take positive values.

The node conservation constraint at v will still be satisfied because the addition of
`(P ) increases the outgoing flow by one, while the subtraction of `(P ′) decreases this
flow by one, and neither of the paths alter the incoming flow. For any node w other
than v, note that since P ′ and P are out-trees and maximal, the node w has exactly
one outgoing and one incoming arc, so the addition of `(P ) and the subtraction of
`(P ′) do not violate the conservation constraint.
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Observe that

fe(φ+ `(P )− `(P ′)) =


fe(φ) + 1 e ∈ E(P ) \ E(P ′),

fe(φ) e ∈ E(P ′) ∩ E(P ),

fe(φ)− 1 e ∈ E(P ′) \ E(P ).

From this and the assumptions of the lemma it is apparent that the edge capacity
constraints are preserved. It follows from this same observation that E(`(P )) ⊆
F+(φ + `(P ) − `(P ′)). Let e be some edge of the path P . From the observation, it
is immediate that e receives positive flow in φ+ `(P )− `(P ′) if e is not in P ′. If e is
in P ′, then

fe(φ+ `(P )− `(P ′)) = fe(φ)

and, by the assumptions of the lemma, fe(φ) ≥ 1. Thus, in either case, the edge e
receives positive flow in φ+ `(P )− `(P ′).

Given a path P and a spanning in-forest X, it is possible to extend the path into
a maximal compath using only edges from the spanning in-forest.

Lemma SM3.5. Let P be a compath in an ADF-graph H starting at some node
v in V (H), and let X be a spanning in-forest of H. There exists a maximal compath
P ′ of H starting at v such that E(P ) ⊆ E(P ′) ⊆ E(P ) ∪X.

Proof. We prove this by induction on the number of edges in P . If P consists of
a single edge e = (v,W ), then it follows from Lemma SM3.1 and Lemma SM3.2 that

P ′ = e+
∑
w∈W

U(w;X)

is a maximal compath. Suppose that this theorem holds for any compath with k
edges, and let P be a compath with k+ 1 edges. Let e = (v,W ) be the outgoing edge
of v in P . Consider U(w;P ) for some w in W ∩ V (H). If w has an outgoing edge
in P then U(w;P ) is a compath, and this compath cannot include the edge e, so it
has at most k edges. By induction, there exist a maximal compath Pw starting at w
such that U(w;P ) ⊆ Pw and E(Pw) ⊆ E(U(w;P )) ∪ X. If w has no outgoing edge
in P , then let Pw = U(w;X), which is a maximal compath by Lemma SM3.1. Then,
we claim that

P ′ = e+
∑

w∈W∩V (H)

Pw

is a maximal compath that satisfies the desired properties. Lemma SM3.2 guarantees
that this is a maximal compath starting at v.

By definition of each compath Pw, E(Pw) ⊆ E(U(w;P )) ∪X, so it must be true
that

E(P ′) ⊆ e+

( ⋃
w∈W

E(U(w;P ))

)
∪X.

From this, any edge η in P ′ is either the edge e, is in the subgraph U(w;P ) for some
w ∈W ∩V (H), or is an edge of X. Thus, any edge of P ′ must be an edge of E(P )∪X.

Let η be an edge of P . If η = e, then it is clear that η is an edge of P ′. If η 6= e,
then it must be true that η �P w for some destination node w of e. This implies that
w has an outgoing edge in P and that η is in U(w;P ). By definition, Pw = U(w;P )
when w has an outgoing edge in P , so η is in Pw. Thus, E(P ) ⊆ E(P ′).
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SM4. Proof of Proposition 5.1.
Statement of Proposition 5.1. If an F -graph has a loose cycle with an odd number

of sideways edges, then the corresponding flow problem does not have a TU constraint
matrix.

Proof of Proposition 5.1. Let (e1, ..., ek) be a loose cycle in some F -graph. For
convenience, throughout this proof we will use the convention that k+ 1 is equal to 1.
Let vi be the single node shared by ei and ei+1 for each i between 1 and k. Consider
the submatrix M defined by the flow variables for edges e1, ..., ek and the conservation
constraints corresponding to nodes v1, ..., vk. We will assume that the entries of M
are arranged so that each entry Mij corresponds to the conservation of flow constraint
for node vi and the flow variable on edge ej . We claim this matrix is not TU. If M
were TU, then it would be possible to assign a value si in {−1,+1} for each i between
1 and k such that

k∑
i=1

siMij ∈ {−1, 0, 1}

for each j between 1 and k. Suppose that such a vector s exists. Note that the column
corresponding to some edge ei has exactly two non-zero entries. More specifically,
these non-zero entries appear in rows corresponding to the nodes vi and vi+1. If
ei is a sideways edge, then both of these nodes are destination nodes of ei, and
the corresponding non-zero elements in the matrix M will both take the value −1.
Otherwise, one of these entries will take the value 1 and the other will take the value
−1. From this, we can see that it must be true that

si+1 =

{
−si if ei is a sideways edge

si otherwise

for each i between 1 and k. This implies that

sk+1 = (−1)ms1

where m is the number of sideways edges in the cycle. Since m is odd,

sk+1 = −s1,

but by definition

sk+1 = s1.

SM5. Proof of Proposition 5.3.
Statement of Proposition 5.3. Let P(H,q,C ,a, c) be the system of constraints

for an F-graph flow problem that satisfies the following:
1. H has at least one delivery edge;
2. C is empty.

This system of constraints is a Leontief substitution system.

Proof. In order to be a Leontief substitution system, the right-hand-side vector
must be non-negative. In this case, the elements of the right-hand-side vector of the
min-cost problem are the quantities supplied to the nodes, which we restrict to take
non-negative values.
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We must also show that the constraint matrix is a Leontief matrix. Each column
of the constraint matrix corresponds to some edge e, and has exactly one positive
entry corresponding to the origin node of e. Thus, the constraint matrix satisfies
the condition that every column must have exactly one positive entry. This relies
on the assumption that there are no uncapacitated edges, since the column of the
constraint matrix corresponding to a capacitated edge e has two positive elements:
one corresponding to the origin node of e and one corresponding to the capacity
constraint. We can construct a non-negative vector x∗ such that Ax∗ > 0. By
assumption, H has at least one delivery edge η. The column of the constraint matrix
corresponding to this delivery edge has one positive element and has no negative
elements. Using this fact, simply let the element of x∗ corresponding to η be equal to
one, and let all other elements be equal to zero.

SM6. Proof of Lemma 5.4. In this section, we use the notation defined in
section SM2.

Statement of Lemma 5.4. Let q,C , and a be parameters defining the polytope
P1(H, q,C ,a) of a flow problem on H, and suppose that there exists a spanning
in-forest X that consists of edges in E(H)\C . Let φ be an (integral) feasible solution
in P1(S, q,C ,a) for some subnetwork S of H. Then there exists an (integral) feasible
solution φ′ in P1(H, q,C ,a) such that fe(φ) = fe(φ

′) for all edges e ∈ E(S)\X and
such that fe(φ

′) = 0 for all edges e ∈ E(H) \ (X ∪ E(S)).

Proof of Lemma 5.4. For each node v ∈ V (H), let

Rv = qv +
∑

e∈E−(v,S)

fe(φ)−
∑

e∈E+(v,S)

fe(φ).

For any node v ∈ V (S), Rv = 0 from the conservation constraints in P1(S, q,C ,a).
Note that no node v from V (H) \ V (S) can have outgoing arcs in S. Thus, Rv ≥ 0
for all v. We claim that the solution

φ′ := φ+
∑

v∈V (H)

Rv`(U(v;X))

has the desired properties. Since Rv = 0 for any node v in V (S) then fe(φ) = fe(φ
′)

for all edges e ∈ E(S) \X. It is also easy to see that any edge capacity constraints
will be satisfied by φ′ since it takes the same values as φ in all capacitated edges.

Note that for any edge e ∈ X,

fe(φ
′) := fe(φ) +

∑
v∈V (L(e;X))

Rv.

Consider some node v ∈ V (H);

qv +
∑

e∈E−(v,H)

fe(φ
′)−

∑
e∈E+(v,H)

fe(φ
′)

= qv +
∑

e∈E−(v,S)

fe(φ)−
∑

e∈E+(v,S)

fe(φ)

+
∑

e∈E−(v,X)

∑
w∈V (L(e;X))

Rw −
∑

w∈V (H):

w≺Xe+(v;X)

Rw.
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We claim that the collection {V (L(e;X)); e ∈ E−(v;X)} is a partition of V (L(v;X))\
{v}. It is straightforward to verify that the union of this collection is equal to
V (L(v;X)) \ {v}. Suppose that these sets are not disjoint, so that there is some
node w in V (L(η1;X)) and in V (L(η2;X)) for distinct edges η1 and η2 in E−(v;X).
By Lemma SM3.1, U(w;X) is a compath. Since H is an ADF-graph, this compath is
an out-tree, which implies that v has at most one incoming edge in U(w;X). However,
both η1 and η2 are in U(w;X), and both are incoming edges of v. This is a contradic-
tion. This shows that {V (L(e;X)); e ∈ E−(v;X)} is a partition of V (L(v;X)) \ {v}.
Using this fact, the right-hand-side can be rewritten as

RHS = qv +
∑

e∈E−(v,S)

fe(φ)−
∑

e∈E+(v,S)

fe(φ) +
∑

w∈V (H):

w≺Xv

Rw −
∑

w∈V (H):

w�Xv

Rw

= qv +
∑

e∈E−(v,S)

fe(φ)−
∑

e∈E+(v,S)

fe(φ)−Rv

= 0.

This demonstrates that φ′ is feasible. Further note that if φ is integral, then each
Rv is an integer. Thus, φ′ will also be integral.

SM7. Proof of Theorem 6.1.
Statement of Theorem 6.1. Let there be an ADF-graph H, a set of edges C in

E(H), and a spanning in-forest X of H such that X is disjoint from C . For any vector
of supplies q and capacities a, P1(H,q,C ,a) = P2(H,q,C ,a, X).

Proof. Proof of Theorem 6.1 Define the pseudo-rank r(v;X) of a node v to be
the number of edges in the shortest path from any minimal node to v under the
partial ordering ≺X , with the convention that r(v;X) = 0 if v is a minimal node. Let
V n(H;X) be the nodes that have pseudo-rank of at most n in the poset on V (H)
with ordering ≺X . We define Pn

1 (H,q,C ,a) to be the polytope in R|E| formed by
the conservation constraints for the nodes of V n(H;X) along with the capacity and
non-negativity constraints on the outgoing edges on these nodes. That is,

Pn
1 (H,q,C ,a) := f ∈ R|E| such that∑
e∈E+(v;H)

fe = qv +
∑

e∈E−(v;H)

fe ∀v ∈ V n(H;X),

fe ≤ ae ∀e ∈ C s.t. the origin of e is in V n(H;X),

fe ≥ 0 ∀e ∈ E(H) s.t. the origin of e is in V n(H;X).

We define Pn
2 (H,q,C ,a, X) similarly. Since the parameters of these polytopes will

remain constant throughout this proof, we will refer to these polytopes simply as Pn
1

and Pn
2 .

We prove this property using induction on n. The nodes with pseudo-rank 0 are
the minimal nodes of the poset. Note that the capacity and non-negative constraints
are always the same in P1 and P2 and that for each minimal node v the conservation
constraint is the same in P1 as it is in P2. Thus, P0

1 = P0
2 . Suppose that Pn−1

1 =
Pn−1

2 for some n ≥ 1 and consider some feasible solution φ of Pn
1 . For brevity, we

will use the notation:

R(w;H,X) = qw +
∑

e∈E−(w;H)\X

φe −
∑

e∈E+(w;H)\X

φe.
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By definition Pn
1 ⊆ Pn−1

1 and by the induction assumption Pn−1
1 = Pn−1

2 . Thus,
φ is a feasible solution of Pn−1

2 . Consider some v of depth n. Since φ is feasible for
Pn

1 and there is exactly one edge e+(v;X) in X whose origin is v, then

φe+(v;X) = qv +
∑

e∈E−(v;H)

φe −
∑

e∈E+(v;H)\X

φe

= qv +
∑

e∈E−(v;X)

φe +
∑

e∈E−(v;H)\X

φe −
∑

e∈E+(v;H)\X

φe

= R(v;H,X) +
∑

e∈E−(v;X)

φe.

Each node w in E−(v,X) must have pseudo-rank strictly less than v, so by induction:∑
e∈E−(v;X)

φe =
∑

e∈E−(v,X)

∑
u∈V (H):u≺Xe

R(u;H,X).

We claim that the collection of sets

A := {V (L(e;X)) : e ∈ E−(v;X)}

is a partition of V (L(v;X))− v. It is straightforward to verify that the union of the
sets of A is equal to V (L(v;X)) − v. Suppose there were edges e1 = (w1,W1) and
e2 = (w2,W2) in E−(v;X) such that V (L(e1;X)) and V (L(e2;x)) have a common
node y. By Lemma Lemma SM3.1, U(y;X) is a compath. Since H has disjoint
reachability, every node of U(y;X) must have at most one incoming edge. However,
e1 and e2 are distinct incoming edges of v, both of which are in U(y;X). This is
a contradiction, so sets of A must be disjoint. Using this fact, we can rewrite the
summation ∑

e∈E−(v;X)

φe =
∑

u:u≺Xv

R(u;H,X).

Thus,

φe+(v,X) = R(v;H,X) +
∑

u:u≺Xv

R(u;H,X)

=
∑

u:u�Xv

R(v;H,X).

Thus, φ satisfies the conservation constraints of Pn
2 . As in the base case, the capacity

and non-negativity constraints are the same in Pn
1 as in Pn

2 . Thus, Pn
1 ⊆Pn

2 . This
sequence of steps can be reversed to show that Pn

2 ⊆Pn
1 .

SM8. Proof of Theorem 6.3.
Statement of Theorem 6.3. Let there be an ADF-graph H, a set of edges C in

E(H), and a spanning in-forest X of H such that X is disjoint from C . Let q and
a be integral vectors of supplies and capacities respectively. If the non-degeneracy
assumptions (stated at the beginning of section 6) hold then the convex hulls of in-
tegral solutions to P1(H,q,C ,a), P2(H,q,C ,a, X), and P3(H,q,C ,a, X) all have
dimension |E \X|.
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Proof of Theorem 6.3. First, note that there is a natural linear bijection between
π : P1 → P3 that preserves integrality. For a feasible solution λ to P1, π(λ)
is formed by omitting the variables fe for each e ∈ X. In the opposite direction,
consider a feasible solution λ to P1. The inverse π−1(λ) takes the same values as λ
on the variables fe for each e ∈ E \X, and for e ∈ X the value of the variables fe are
given by:

fe+(v,X) =
∑

w:w�Xv

qw +
∑

e∈E−(w;H)\X

fe −
∑

e∈E+(w;H)\X

fe

 ∀v ∈ V (H)

Theorem 6.1 guarantees that this preserves feasible solutions, and it is easy to see that
this mapping preserves integrality. This implies that the dimension of the convex hull
of integral solutions to P1 and P2 is the same that of P3.

Since P3 has |E\X| variables, the dimension of these polyhedra is at most |E\X|.
We can identify |E \X|+ 1 integral affinely independent feasible solutions in P1 (or
P2). This set of solutions contains |E \X| solutions that correspond to the edges of
E \X, as well as one additional solution. We first define a solution O in which the
flow assigned the edge e = (v,W ) is given by:

fe(O) :=


∑

w:w�Xv

qw if e is in X,

0 otherwise.

It is straightforward to verify that this solution satisfies the constraints of P2, which
implies that it is a feasible solution of P1.

We now construct a solution λe corresponding to each edge e in E \ X. Order
the edges of E \X in a total ordering ≺∗ that is consistent with the natural partial
ordering ≺H . We will then construct the solutions corresponding to each arc one at
a time, following the ordering ≺∗ and starting with the minimal arc. The solution λe

for each arc e is constructed in such a way that e is fe(λ
e) > 0 and such that e′ ≺∗ e

for any edge e′ of F+(λe)\X. This implies that the solutions are affinely independent
and that the projections of these solutions onto P3 are affinely independent. This
fact is also useful in the construction of solutions in subsequent iterations. The details
of the construction of λe for some edge e = (v,W ) are as follows. Lemma SM3.1 and
Lemma SM3.2 imply that

Pe := e+
∑
w∈W

U(w;X)

is a maximal compath. There are two cases:
1. There is some node ρ �X v such that qρ > 0.
2. qρ = 0 for all ρ �X v.

Consider case 1. We define the corresponding solution λe = O + `(Pe)− `(U(v;X)).
Note that O has no capacitated edges with positive flow, so it is trivially true that
E(Pe) shares no capacitated edges in F+(O). Note also that because there is some
node ρ �X v such that qρ > 0, then ∑

w:w�Xv

qv > 0.

From the construction of O, we can then see that every edge in the compath U(v;X)
is assigned a positive flow in O. Thus, by Lemma SM3.4, λe is a feasible solution.
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Note that e is the only edge of E \X that is assigned a positive flow, so it is trivially
true that all of the edges E \X that receive positive flow are less than or equal to e
in the natural ordering on H.

For case 2, let ω be a minimal node of L(v;X). From the non-degeneracy as-
sumptions we know there is some node y such that y �H ω and qy > 0, and we know
that qω = 0 because qρ = 0 for all ρ ≺X e. Thus, there must be an edge η into the
node ω. Since ω is a minimal node in the ordering ≺X , η is an edge of E \X. The
solution λη was constructed in a previous iteration of this process because η ≺H e. By
construction, edge η is in F+(λη), while fξ(λ

η) = 0 for any edge ξ of E \X such that
ξ �H η. Thus, the edge e+(ω,X) must receive positive flow in λη because there is a
positive amount of flow on an incoming edge of ω, and there is zero flow on all other
outgoing edges of ω. Thus, by Lemma SM3.3 there is a maximal compath Pe+(ω,X)

formed from edges of F+(λη) starting at the edge e+(ω,X). Then, by Lemma SM3.1
and Lemma SM3.4, the solution

θ := λη + ` (U(ω;X))− `
(
Pe+(ω,X)

)
is a feasible solution in which all the edges of U(ω;X) are assigned a positive quantity
of flow.

Note that it is still true in θ that any edge of F+(θ) \ X is less than or equal
to η in the natural ordering on H. Further note that in the solution θ, positive flow
is assigned to all edges of U(v;X) because U(v;X) is a subgraph of U(ω;X). Thus,
again applying Lemma SM3.1 and Lemma SM3.4, the solution

λe := λη + ` (U(ω;X))− `
(
Pe+(ω,X)

)
+ ` (Pe)− ` (U(v;X))

is feasible, and has positive flow assigned to the edge e. Since η ≺H e and e is the
only edge of E \X that is given more flow in λe than θ, it is true that e′ ≺H e for
any edge e′ in F+(λe) \X. This completes the construction.

SM9. Additional Results for Subsection 6.2. This section provides three
theorems that describe the conditions under which the constraints of the F -graph
flow problem are facet-defining and the conditions under which these constraints are
redundant. Together, these three theorems imply Theorem 6.4. Throughout this
section, the constraints (3.1),(3.2), and (3.3) of P1 will be referred to as conservation,
capacity and non-negativity constraints respectively; (6.1),(6.2), and (6.3) of P2 and
(6.4),(6.5), and (6.6) of P3 will likewise be referred to by these names. We make use
of the notation defined in section SM2.

Theorem SM9.1. Let there be an ADF-graph H, a vector of supply quantities q,
a set of capacitated edges C , a vector of demand quantities a, and a spanning in-forest
X of E(H) that contains no capacitated edges. Let there be some edge η = (v,W ) in
E(H) \X. If there is some ρ ∈W such that:

1. qρ = 0;
2. η is the only incoming edge of ρ;

then the non-negativity constraint for the edge η in the polytope P1(H, q,C ,a) is
dominated by the conservation constraint of the node ρ and the non-negativity con-
straints on the outgoing edges of ρ. Otherwise, this constraint is facet-defining for the
convex hull of integral solutions.

This statement also holds if P1(H, q,C ,a) is replaced by P2(H, q,C ,a, X) or
P3(H, q,C ,a, X).
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Proof. In the forward direction, let there be some (possibly infeasible or frac-
tional) solution φ that satisfies the conservation constraint for ρ and the non-negativity
constraints for the edges in E+(ρ,H) as defined for the polytope P1. Then,∑

e∈E−(ρ;H)

fe(φ)−
∑

e∈E+(ρ;H)

fe(φ) = qρ.

Since η is the only incoming edge of ρ, this can be rewritten as

fη(φ) = qρ +
∑

e∈E+(ρ;H)

fe(φ).

Since φ satisfies the non-negativity constraints on the edge E+(ρ;H) this implies that
fη(φ) ≥ 0.

Similarly, let there be some (possibly infeasible or fractional) solution φ that
satisfies the conservation constraint for ρ and the non-negativity constraints for the
edges in E+(ρ,H) as defined for the polytope P2. Then,the conservation constraint
for ρ states that

fe+(ρ;W )(φ) =
∑

w:w�Xv

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

 .

Since η is the only incoming edge of ρ and η is not in X, ρ has no preceding nodes in
X. Therefore, this can be rewritten as

fe+(ρ;W )(φ) = fη(φ)−
∑

e∈E+(ρ;H)\X

fe(φ),

∑
e∈E+(ρ;H)

fe(φ) = fη(φ).

Again, the non-negativity constraints on the outgoing edges of ν imply that fη ≥ 0.
The argument in the forward direction for P3 is nearly identical. Let there

be some (possibly infeasible or fractional) solution φ that satisfies the conservation
constraint for ρ and the non-negativity constraints for the edges in E+(ρ,H) \X as
defined for the polytope P3. Then,the conservation constraint for ρ states that

0 ≤
∑

w:w�Xρ

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

 .

As before, η is the only incoming edge of ρ and η is not in X, so ρ has no preceding
nodes in X and we can rewrite this as:

0 ≤ fη(φ)−
∑

e∈E+(ρ;H)\X

fe(φ),

∑
e∈E+(ρ;H)\X

fe(φ) ≤ fη(φ),

and the non-negativity constraints on the outgoing edges of ν imply that fη ≥ 0.
In the opposite direction, let η be an edge of E(H) \X and suppose that there

is no node ρ such that η is the only incoming arc. We can construct a set of affinely-
independent solutions of size |E(H) \X| in which fη = 0. In fact, we claim that with
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very slight modifications, the procedure given in the proof of Theorem 3 can provide
these solutions. Start with O, as defined in the previous proof. Order the arcs of
E \ (X + η) in an ordering that is consistent with the natural partial ordering on H,
and consider each arc ξ = (v′,W ′) starting with the minimal arc. The same two cases
apply. If there exists some node y �X η such that qy ≥ 0, then construct the solution
λξ as before. If such a node does not exist, then we construct the solution almost the
same as before, but more care is taken as to which incoming edge we select. Again,
let ω be a minimal node of L(v′;X). As before, ω must have an incoming edge ζ in
E(H) \ X. If ζ 6= η, then we construct the solution λη by modifying the solution
λζ as before. If ζ = η, then by assumption ω must have another incoming edge κ in
E(H) \X, and we construct the solution λη by modifying the solution λκ as before.

By the same arguments as before, the projection of these solutions on to P3 is
also affinely independent. Further note that in the construction of the solution λξ,
positive flow is only assigned to edges that were considered in previous iterations of
this procedure. Since no iteration is run for the edge η, none of these solutions assign
positive flow on the edge η.

In some cases, the capacity constraint on an edge can be dominated by the con-
straints corresponding the preceding subgraph. If sufficient flow cannot be routed
to the origin node of an edge, then it could be that no feasible solution meets the
capacity constraint. In this case, those preceding constraints dominate the capacity
constraint. On the other hand, the capacity constraint is facet-defining whenever it
is possible to route enough flow to the origin node.

Theorem SM9.2. Let there be an ADF-graph H, a vector of supply quantities
q, a set of capacitated edges C , a vector of demand quantities a, and a spanning
in-forest X of E(H) that contains no capacitated edges. Let η be an edge in C . Let
f∗ be the value to the optimization problem max{fη(φ) : φ ∈ P1(L(η;H), q,C −
η,a)}. If f∗ ≤ aη, then the subset of constraints that correspond to the subgraph
polytope P1(L(η;H), q,C − η,a) dominate the capacity constraint for η. Otherwise,
the constraint is facet-defining for the convex hull of integral solutions. This theorem
is also true if P1 is replaced by P2 or P3.

Proof. The forward direction is straightforward.
In the backwards direction, suppose that f∗ > aη. Then we can construct |E(H)\

X| integral solutions that satisfy this constraint at equality. Let a+`(η) be a vector a′

of capacities where a′e = ae for all e 6= η and a′η = aη + 1. Lemma 4.3 and Lemma 5.4
imply that there exists an integral feasible solution φ to P1(H,q,C ,a + `(η)) such
that:

• fη(φ) = aη + 1,
• fe(φ) = 0 for all e in E \X where e �H η.

We use a similar strategy as in previous proofs, and construct feasible solutions one
at a time in an iterative procedure. In this proof, we divide this procedure into two
stages. In each iteration the first stage, we define a solution λξ corresponding to
some edge ξ of F+(φ) \ (X + η). In each iteration of the second stage, we define
a solution λξ corresponding to an edge ξ of F 0(φ) \ X. We take care that across
both stages, no solutions differ from φ on the amount of flow assigned to some edge ξ
until the iteration corresponding to this edge is reached. This guarantees that these
solutions are affinely independent (and that their projections onto P3 are also affinely
independent).

Order the edges of F+(φ) \ X in an ordering consistent with ≺H . Consider
each edge ξ = (v,W ) one at a time, starting with the maximum edge. Let Pξ be
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a compath in the edges F+(φ) whose first edge is ξ (such a compath must exist by
Lemma SM3.3). Define a solution

θ := φ− `(Pξ) + `(U(v;X)).

By Lemma SM3.4, this solution is a feasible solution of P1(H,q,C ,a+ `(η)). There
are two cases: either η is in Pξ or η is not in Pξ. If η is in Pξ then fη(θ) = aη, so
that θ is a feasible solution of P1(H,q,C ,a). In this case, we can let λξ = θ. If η
is not in Pξ then fη(θ) = aη + 1. Then let Pη be a compath in F+(θ) starting at η
(Lemma SM3.3 again ensures existence), let ρ be the origin node of η and let

λξ := θ − `(Pη) + `(U(ρ;X))

= φ− `(Pξ) + `(U(v;X))− `(Pη) + `(U(ρ;X)),

which is a feasible solution for P1(H,q,C ,a+ `(η)) by Lemma SM3.4. Since η is not
an edge of X, then it must be true that fη(λξ) = fη(φ) − 1, so that λξ is a feasible
solution for P1(H,q,C ,a).

In either case, note that fξ(λ
ξ) = fξ(φ) − 1. Suppose that fξ(λ

ψ) 6= fξ(φ) for
some edge ψ in E(H) \X where ψ 6= ξ and ψ 6= η. Then, ξ must be in the compath
Pψ or in the compath Pη. The compath Pη starts at η and consists of edges from
F+(φ). By definition of φ, fe(φ) = 0 for all e in E \X where e �H η. This implies
that η is the only edge of Pη that is not in X. Since ξ 6= η, it must be true that ξ is an
edge in Pψ. This implies that ψ ≺H ξ, which in turn implies that λψ was constructed
in a later iteration than λξ. In other words, at the point in time when the solution
λξ is constructed, it is the only solution that differs from φ in the amount of flow
assigned on the edge ξ. Note also that fe(φ) = fe(λ

ξ) for any edge e in F 0(φ) \X.
Next, consider the arcs of F 0(φ). Order these arcs in an ordering that agrees

with the natural ordering ≺H . Consider each arc ξ, starting with the minimum arc.
We claim that there is a maximal compath Pξ such that:

1. The edge ξ is an edge of Pξ;
2. For any edge e ∈ Pξ such that e �H ξ, the edge e is in X;
3. The set of edges E(Pξ) is disjoint from F+(φ) ∩ C ;
4. The compath Pξ starts at a node that has an outgoing edge ψ in F+(φ).

If the origin node of ξ has a positive quantity of resource, then it is straightforward to
verify that the path U(e;X) is a compath that meets these conditions. Suppose that
this origin node has no resource present. By the non-degeneracy conditions (given
at the beginning of section 6), there must exist some path P0 from some node ρ to
the origin node of ξ where qρ > 0. Let e∗ = (v,W ) be the minimal edge of P0

such that E(U(e∗;P0 + ξ)) is disjoint from F+(φ). Consider the case that v = ρ,
i.e. e∗ is the outgoing edge of ρ in P0. Since qρ > 0, then there must be another
outgoing edge ψ in F+(φ). Consider the case that e∗ is not the outgoing edge of
ρ in P0. Then there exists some edge e′ that precedes e∗ in the path P0; this edge
must be in F+(φ) from the definition of e∗. Since v has an incoming edge with
positive flow in φ, it must also have an outgoing edge ψ in F+(φ). Thus, in either
case, U(e∗;P0) is a path in F 0(φ) whose origin node has an outgoing edge ψ in
F+(φ). By Lemma SM3.5, there exists a maximal compath Pξ starting at v such
that E(U(e∗, P0 + ξ)) ⊆ E(Pξ) ⊆ E(U(e∗;P0 + ξ)) ∪X. Since ξ is the maximal edge
of P0 + ξ, it is an edge of U(e∗, P0 + ξ), so requirement 1 is satisfied by Pξ. All of the
edges in P0 are less than or equal to ξ and are not in F+(φ) ∩ C , so Pξ also satisfies
requirement 2 and 3. By definition, the compath starts at a node that has an outgoing
edge ξ in F+(φ), so requirement 4 is also satisfied. Let Pψ be a compath starting at
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ψ in F+(φ) (the existence of this compath is guaranteed by Lemma SM3.1). Then,
we can define a solution

θ := φ+ `(Pξ)− `(Pψ),

which is a feasible solution for P1(H,q,C ,a + `(η)) by Lemma SM3.4. As before, if
η is an edge of Pψ, then θ is a feasible solution for P1(H,q,C ,a) and we let λξ = θ.
If η is not in E(Pψ),

λξ := θ − `(Pη) + `(U(v,X))

= φ+ `(Pξ)− `(Pψ)− `(Pη) + `(U(v;X)).

which is a feasible solution for P1(H,q,C ,a) for the same reasons as in the first
stage.

Similar to before, note that fξ(λ
ξ) = fξ(φ) + 1. We also claim that λξ is the first

solution constructed in this process that differs from φ in the amount of flow assigned
to ξ. Let λξ be the solution corresponding to some ξ constructed in this second stage.
Let λψ be some other solution corresponding to an edge ψ such that fξ(λ

ψ) 6= fξ(φ).
Since ξ is assigned zero flow in the solution φ, then ξ must be assigned more flow in
λψ than in φ. In any solution constructed in the first stage, only edges of X receive
more flow than in φ. Thus, λψ is a second-stage solution. In a second-stage solution,
λψ only assigns more flow than φ to edges of X and edges of a compath Pψ. Thus, ξ
is in the compath Pψ. This compath is defined so that every edge of Pψ is an edge of
X or is less than or equal to ψ. Thus, ξ must be less than ψ. This would imply that
the solution λξ was constructed in a previous iteration than λψ.

Theorem SM9.1 and Theorem SM9.2 describe the conditions under which the
non-negativity and capacity constraints for edges of E(H) \X are facet-defining. In
P1 and P2, the remaining inequality constraints are the non-negativity constraints
corresponding to the edges of X. For P3, the conservation constraints are the con-
straints that have not yet been handled. There is a correspondence between these
constraints. The non-negativity constraint of the edge e+(v;X) for some node v
holds at equality in some solution φ if and only if the conservation constraint at v
holds at equality in the projection of φ on to the polytope P3. For this reason, the
conservation constraints in P3 are facet-defining when the non-negativity constraints
on edges of X are facet-defining for P1 and P2. These conditions are described in
Theorem SM9.3. We use the notation that q+ `(v) is the vector of quantities q′ such
that

q′w =

{
qw if w 6= v,

qw + 1 if w = v.

Theorem SM9.3. Let there be an ADF-graph H, a vector of supply quantities q,
a set of capacitated edge C , a vector of demand quantities a, and a spanning in-forest
X of E(H) that contains no capacitated edges. Let v be any node in V (H), and let

f∗ = max

 ∑
w:w�Xv

 ∑
e∈E+(w)\X

fe(φ)−
∑

e∈E−(w)\X

fe(φ)

 :

φ ∈P1(L(v;H) + E+(v;H), q + `(v),C ,a)

 .
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Note that the value of f∗ will remain unchanged if P1 is replaced with P2 or P3.
Consider the following cases:

1. There exists a destination node ρ of e+(v,X) such that qρ = 0 and e+(v,X)
is the only incoming edge of ρ.

2. The value f∗ is less than or equal to
∑

w:w�Xv

qw.

3. Neither case 1 nor case 2 holds.
If case 1 holds then the non-negativity constraint of e+(v,X) is dominated by the non-
negativity constraints of the outgoing edges of ρ and the conservation constraint on
ρ. If case 2 holds then the non-negativity constraint of e+(v,X) is dominated by the
constraints of P1(L(v;H)+E+(v;H), q,C ,a) excluding the non-negativity constraint
on e+(v,X). If case 3 holds, then the non-negativity constraint on e+(v,X) is facet-
defining for the convex hull of integral solutions. This statement remains true if P1

is replaced by P2.
A similar statement holds true for P3: if case 1 holds then the conservation

constraint at v is dominated by the conservation constraint on the node ρ and the non-
negativity constraints of the outgoing edges of ρ. If case 2 holds then the conservation
constraint at v is dominated by the constraints of P3(L(v;H) + E+(v;H), q,C ,a)
excluding the conservation constraint at v. If case 3 holds, then the conservation
constraint at v is facet-defining for the convex hull of integral solutions.

Proof. Case 1. For P1 and P2, the proof of this statement when case 1 holds
is nearly identical to the proof of the forward direction of Theorem SM9.1, so we will
only provide a proof for the statement for P3. Let there be some edge e+(v;X) in
X that is the only incoming edge of a node ρ. Let φ be a (possibly infeasible or
fractional) solution to P3(H,q,C ,a, X) that satisfies the conservation constraint at
ρ and the non-negativity constraints on the outgoing edges of ρ. Then

0 ≤
∑

w:w�Xρ

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

 .

Since v is the node immediately preceding ρ inX, the right-hand-side can be rewritten:

0 ≤
∑

w:w�Xv

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)


+

qρ +
∑

e∈E−(ρ;H)\X

fe(φ)−
∑

e∈E+(ρ;H)\X

fe(φ)

 .

By the assumptions in this case, qρ = 0 and the set E−(ρ;H) \X is empty. Then

0 ≤
∑

w:w�Xv

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

− ∑
e∈E+(ρ;H)\X

fe(φ).

Applying the non-negativity constraints on the outgoing edges of ρ,

0 ≤
∑

w:w�Xv

qw +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

 .
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Thus, the conservation constraint on the node v is dominated by the conservation
constraint of ρ and the non-negativity constraints on the edges of ρ. This completes
the proof of the statement when condition 1 holds.

Case 2. The proof of the statement for P2 when case 2 holds is as follows.
First, we claim that non-negativity constraint for the edge e+(v;H) of the polytope
P2 (L(v;h) + E+(v;H),q + `(v),C ,a) is a redundant constraint of this polytope. Let
φ be a feasible (possibly fractional) solution to this polytope. Then, by definition of
f∗ and the assumptions of the case,

∑
w:w�Xv

qw ≥
∑

w:w�Xv

 ∑
e∈E+(w)\X

fe(φ)−
∑

e∈E−(w)\X

fe(φ)


0 ≤

∑
w:w�Xv

qw +
∑

e∈E−(w)\X

fe(φ)−
∑

e∈E+(w)\X

fe(φ)


1 ≤

∑
w:w�Xv

q′w +
∑

e∈E−(w)\X

fe(φ)−
∑

e∈E+(w)\X

fe(φ)


1 ≤ fe+(v;X)(φ).

Thus, there is no solution φ in which the non-negativity constraint on the edge
e+(v;H) holds at equality, and this constraint is redundant.

Let there be some (infeasible, possibly fractional) solution θ in which all con-
straints of the polytope P2 (L(v;h) + E+(v;H),q,C ,a) other than the non-negativity
constraint on e+(v, ;X) are satisfied. We claim that the solution

φ := θ + `(e+(v;X))

is a feasible solution to P2 (L(v;h) + E+(v;H),q + `(v),C ,a). Note that the only
constraint of this polytope in which e+(v;X) appears the non-negativity constraint
on this edge is the conservation constraint on v. Now,

fe+(v;X)(φ) = fe+(v;X)(θ) + 1

=
∑

w:w�Xv

qw +
∑

e∈E−(w)\X

fe(θ)−
∑

e∈E+(w)\X

fe(θ)

+ 1

=
∑

w:w�Xv

q′w +
∑

e∈E−(w)\X

fe(φ)−
∑

e∈E+(w)\X

fe(φ)

 .

So φ satisfies the conservation constraint on v. As we already showed, the non-
negativity constraint on e+(v;X) is redundant. The solution φ satisfies all other
constraints, so it will satisfy this non-negativity constraint as well. Thus, φ solution
is a feasible solution for P2 (L(v;h) + E+(v;H),q + `(v),C ,a) excluding the non-
negativity constraint on e+(v;X). From the previous arguments,

fe+(v;X)(φ) ≥ 1.

This implies that

fe+(v;X)(θ) ≥ 0.
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Thus, any feasible solution that satisfies the constraints of P3(L(v;H)+E+(v;H),q,C ,a)
excluding the non-negativity constraint on e+(v;H) will also satisfy the non-negativity
constraint.

The proof of the statement for P3 when case 2 holds is similar. Since

f∗ ≤
∑

w:w�Xv

qw

then for any feasible solution φ of P3(L(v;H) + E+(v;H),q + `(v),C ,a, X),

∑
w:w�Xv

qw ≥
∑

w:w�Xv

 ∑
e∈E+(w)\X

fe(φ)−
∑

e∈E−(w)\X

fe(φ)

 ,

0 ≤
∑

w:w�Xv

qw +
∑

e∈E−(w)\X

fe(φ)−
∑

e∈E+(w)\X

fe(φ)

 ,

1 ≤
∑

w:w�Xv

q′w +
∑

e∈E−(w)\X

fe(φ)−
∑

e∈E+(w)\X

fe(φ)

 ,

for any feasible solution φ in the polytope. Thus, the conservation constraint on v is
never met at equality in this polytope, so the constraint can be removed. Since v is a
maximal node in this polytope, the parameter q′v does not appear in any other con-
straints. Thus, the resulting polytope is equal to P3(L(v;H) + E+(v;H),q,C ,a)
with the conservation constraint on v removed. Thus, for any solution of φ of
P3(L(v;H) + E+(v;H),q,C ,a), it is true that

∑
w:w�Xv

qw ≥
∑

w:w�Xv

 ∑
e∈E+(w)\X

fe(φ)−
∑

e∈E−(w)\X

fe(φ)

 .

This proves that the constraints of P3(L(v;H) + E+(v;H),q,C ,a) excluding the
conservation constraint on v dominate this conservation constraint.

Case 3. Suppose that case 3 holds. It is implied by Lemma 4.3 and Lemma 5.4
that there exists an integral solution φ for P2(H,q+ `(v),C ,a), such that fe(φ) = 0
for any e in E \ (X ∪ E+(v;H)) where e ⊀H v. Due to the assumptions of this case,
there exists a solution that additionally satisfies:

∑
w:w�Xv

 ∑
e∈E+(w;H)\X

fe(φ)−
∑

e∈E−(w;H)\X

fe(φ)

 =
∑

w:w�Xv

q′w,

∑
w:w�Xv

q′w +
∑

e∈E−(w;H)\X

fe(φ)−
∑

e∈E+(w;H)\X

fe(φ)

 = 0,

fe+(v,X)(φ) = 0.

In a similar fashion to previous constructions, we use this solution to construct
|E(H) \X| integral feasible solutions P2(H,q,C ,a, X) in which the non-negativity
constraint on fe+(v;X) is satisfied to equality. These are produced in a three-stage
process. In each iteration of the first stage, a solution corresponding to an edge of
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(F+(φ) ∪ E+(v;H)) \ X is constructed. In the second stage, solutions correspond-
ing to an edge of F+(φ) \ (X ∪ E+(v;H)) are constructed. In the final stage, a
solution corresponding to an edge of F 0(φ) \ X is constructed. As in the proof of
Theorem SM9.2, the solutions are constructed such that λe is the first solution in
this process which assigns an amount of flow on e that differs from that in φ. This
ensures that the solutions are affinely independent and that the projections of these
solutions into P3 are affinely independent as well. For any solution φ for P2, the flow
f+e (v;X)(φ) is equal to zero if and only the conservation constraint holds at equality
in the projection of φ onto P3, so this provides the proof for the statements for all
three polytopes.

For each edge in (F+(φ) ∪ E+(v;H))\X, let Pξ be a maximal compath in F+(φ)
starting at ξ (such a compath must exist by Lemma SM3.3) and let

λξ = φ− `(Pξ).

We claim that this is a feasible solution for P2(H,q,C ,a, X). The non-negativity
constraints and edge capacity constraints are clearly preserved. The conservation
constraint for any node ρ 6= v is preserved, since the maximal compath Pe+(v;X) has
either one incoming and outgoing edge from ν or no incoming edges and no outgoing
edges. The conservation constraint at v is satisfied because this solution has one less
unit of outgoing flow at v that θ and the quantity of supply at the node is decreased by
one. It is clear that fe+(v;X)(λ

ξ) = 0. By definition of φ, any edge assigned positive
flow that is greater than an outgoing edge of v must either be an edge in X. Thus,
we can see that solution λξ only differs from φ in the flow assigned to ξ and the flow
assigned to edges of X.

Order the edges of F+(φ) \ (E+(v;H) ∪ X) in some total ordering consistent
with the natural partial ordering on H. Consider each edge ξ in order, starting with
the maximum edge. Let Pξ be a maximal compath in F+(φ) starting at ξ (such
a compath must exist by Lemma SM3.3). Let y be the origin node of ξ. Define a
solution

θ = φ− `(Pξ) + `(U(y;X)).

By Lemma SM3.1 and Lemma SM3.4, θ is a feasible solution of P2(H,q+`(v),C ,a).
Furthermore, it is clear that

fe+(v;X)(θ) ≤ fe+(v;X)(φ) + 1

≤ 1.

There are two cases: either fe+(v;X)(θ) = 1 or fe+(v;X)(θ) = 0. Consider the former
case. Then, let P+

e (v;X) be a complete compath in F+(θ) starting with the edge
e+(v;X) (such a compath must exist due to Lemma SM3.3). By a similar justification
as that given in the first stage construction,

λξ := θ − `(Pe+(v;X)),

= φ− `(Pξ) + `(U(y;X))− `(Pe+(v;X)).

is a feasible solution for P2(H,q,C ,a, X). Note also that λξ(e+(v;X)) = 0, so the
non-negativity constraint of e+(v;X) holds to equality.
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Consider the case that fe+(v,X)(θ) = 0. Then it must be true that fη(φ) ≥ 1 for
some outgoing edge η of v not in X, because∑

e∈E+(v)\X

fe(θ) = 1 + qv +
∑

e∈E−(v)

fe(θ)

≥ 1.

Let Pη be a complete compath starting at η in F+(θξ) (such a compath must exist
due to Lemma SM3.3). Then, let

λξ := θ − `(Pη)

= φ− `(Pξ) + `(U(y;X))− `(Pη).

For similar reasons as the previous case, λξ is a feasible solution for P2(H,q,C ,a, X)
and it is clear that fe+(v,X)(θξ) = 0.

We can show that in either case, each second-stage solution λξ is the first solution
that differs from φ in the amount of flow assigned on ξ. Suppose that some solution
λψ constructed in another iteration corresponding to an edge ψ = (v′,W ′) differs from
φ in the amount of flow on ξ. As previously discussed, each first-stage solution differs
from φ only on the flow assigned to the outgoing edge of v and to edges of X. Thus,
λψ must be a second- or third-stage solution. If λψ is a third-stage solution, then ψ is
constructed after ξ. If λψ is a second-stage solution, it is constructed by making three
modifications to φ: flow on compath Pψ is decreased, flow on the compath U(v′;X)
is increased, and flow is decreased on some path Pe′ starting on an outgoing edge of
v. The compath Pψ only contains edges of F+(φ) that are greater than or equal to
ψ. The compath U(v′;X) only contains edges of X. Finally, for similar reasons as in
the first stage, every edge of E(Pe′) other than e′ is an edge of X. If e′ is in X, then
all edges of Pe′ are edges of X, while if e′ is not in X then it is one of the edges whose
corresponding solution was constructed in the first stage. Thus, λψ differs from φ
only in flow assigned to edges that are either greater than ψ or are in X. Thus, ξ must
be greater than ψ, which implies that the solution λψ would be constructed after the
solution λξ.

Finally, order the edges of F 0(φ) \ X according to some total ordering that is
consistent with the natural partial ordering on H. Take each edge ξ of this ordering,
starting with the minimum edge. For the same reasons as in the previous theorem,
we claim that there is a compath Pξ such that:

1. The compath Pξ contains the edge ξ;
2. For any arc e ∈ Pξ such that e � ξ, then e ∈ X;
3. The edges E(Pξ) are in F 0(φ) ∪X;
4. The compath Pξ starts at an node that has an outgoing edge ψ in F+(φ).

Let Pψ be a compath starting at ψ in F+(φ) (such a compath must exist by Lemma SM3.3).
Then, we can define a solution

θ := φ+ `(Pξ)− `(Pψ).

This solution is a feasible solution for P2(H,q + `(v),C ,a) by Lemma SM3.4. Simi-
larly to the construction of the second-stage solutions, we can see that

fe+(v,X)(θ) ≤ fe+(v,X)(φ) + 1

≤ 1,
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and just as before, if fe+(v,X)(θξ) = 1 then we define:

λξ = θ − `(Pe+(v,X)),

while if fe+(v,X)(θξ) = 0, then there exists some outgoing edge η of v such that
θξ(η) ≥ 1, and we let

λξ = θ − `(Pη)

= φ+ `(Pξ)− `(Pψ)− `(Pη).

for some compath Pη in F+(θ) starting with the edge η. Again we can show that
in either case, each third-stage solution λξ is the first solution that differs from φ in
the amount of flow assigned on ξ. Suppose the solution to some other solution λψ

corresponding to an edge ψ = (v′,W ′) differs from φ in the amount of flow on ξ.
Since φ assigns zero flow to the edge ξ, then λ must assign higher flow on this edge
than φ does. Again, each first-stage solution differs from φ only on the flow assigned
to the outgoing edge of v and to edges of X. Each second-stage solution only assigns
higher flow than φ on edges of X, while λξ assigns higher flow on ξ than φ does.
Thus, λψ must be a third-stage solution. The solution λψ only assigns higher flow
than φ along the path Pψ starting at ψ. By definition, every edge of Pψ is either less
than ψ or is in X. Thus, ψ is greater than ξ, which implies that λψ is constructed in
a later iteration than λξ. This completes the proof.
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