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Abstract—In this paper, we consider the problem of selecting a 
set of parameters for a Ground Delay Program so that the 
program achieves a vector of performance objectives that is 
similar to a target vector. This could be used to support 
consensus-based ground delay program planning. We propose a 
method that selects several potential candidates of vectors, and 
we compare our method with a simple greedy algorithm. Our 
results indicate that our proposed method is able to provide 
multiple solutions that are closer to the efficient frontier than the 
greedy solution. 
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I.  INTRODUCTION 
The amount of traffic scheduled to arrive at an airport can 
exceed the capacity of that airport to handle traffic. This 
situation often occurs when adverse weather decreases the 
capacity of an airport. When such an imbalance is anticipated, 
the Federal Aviation Administration (FAA) can issue a Ground 
Delay Program (GDP). This is a traffic management initiative 
that delays flights that are destined for the impacted airport, but 
that have not yet departed. These flights would then arrive at a 
later time in which the airport has sufficient capacity. In this 
way, delays are taken on the ground rather than in the air, 
which is more efficient and avoids unsafe situations. GDPs are 
implemented frequently. For example, according the National 
Traffic Management Logs (NTML), the FAA implemented 
more than 900 GDPs in 2014. Some airports are especially 
prone to this type of management initiative; Newark Liberty 
International Airport (EWR), LaGuardia Airport (LGA), John 
F. Kennedy International Airport (JFK) and San Francisco 
International Airport (SFO) each experienced more than 100 
GDPs in 2014. 

Planning a GDP involves selecting several parameters, 
such as the number of flights that are permitted to arrive at the 
airport, and the duration of time in which the restrictions are in 
effect. This is not a trivial task, as there are many sources of 
uncertainty, including some sources that are difficult to 
characterize or predict. Weather can deviate from the forecast, 
flights do not always arrive on schedule, and flight operators 
may alter their schedules in response to the actions taken by 
the FAA. There have been some proposed methods for 
planning GDPs [1, 2, 3, 4, 5, 6, 7, 8]. These existing methods 
tend to have an objective function that minimizes a weighted 
sum of assigned ground delays and expected air delays, and for 
most of these methods it would be difficult to incorporate other 
types of performance measures. 

Recent work suggests that there are multiple criteria that 
may be used to evaluate the performance of traffic 
management initiatives. In [9], several criteria for evaluation of 
GDPs were proposed. There are usually trade-offs between 
these criteria, and the goals of flight operators can vary day-to-
day, so a well-executed traffic management initiative should 
balance the performance criteria in a way that matches the 
goals of the flight operators on that day. There has been some 
work towards planning GDPs within this multi-criteria 
paradigm. A GDP planning model that incorporates a 
predictability criterion alongside the usual delay objectives was 
proposed in [10].  

We propose a more flexible approach that can be used with 
any performance criteria with no alterations. A mechanism, 
called Consensus Service Expectation Level setting 
(COuNSEL), has been developed that would provide a 
“consensus vector” of performance objectives based on the 
input of flight operators [11]. This consensus vector is simply a 
vector of multiple performance objectives, which reflect 
different aspects of performance. In the existing work on the 
COuNSEL mechanism, the consensus vector was three-
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dimensional, and its components consisted of measures of 
efficiency, throughput, and predictability. The intent of the 
COuNSEL mechanism was that decision-makers at the FAA 
would then attempt to implement a ground delay program that 
achieves, as closely as possible, the specified vector of 
performance objectives. The main contribution in this paper is 
to provide a method for selecting the parameters of a GDP in 
order to achieve a specified balance of performance objectives 
under a given set of weather and traffic conditions. This would 
allow such a consensus mechanism to be implemented. More 
broadly, the work in this paper can be used to find a set of 
GDP parameters whose expected performance is close to some 
target vector of performance measures, regardless of the source 
of the vector. 

II. METHODOLOGY 

A. Background: Geographically-weighted Random Forests 
We make use of the Geographically-Weighted Random Forest 
(GWRF) method, which was proposed in [12] as a method for 
estimating the expected performance that would result from 
implementing a GDP with a given set of parameters in a given 
set of weather and traffic conditions. The method is a 
supervised method, so it requires a training set of observations, 
where each observation describes a set of GDP parameters and 
the resulting performance that these parameters achieved. We 
would expect that these observations occurred under varying 
weather and traffic conditions, and the GWRF method requires 
a numerical measure of distance between each observed set of 
conditions and those conditions in which a prediction is 
desired. At least one such measure of distance has been 
proposed [13]. 

The GWRF method is built from collections of decision 
trees, which are rooted binary trees. Each non-leaf node has an 
associated decision rule, which can be written in the form 
‘x < a’ where x is a variable and a is a value. Each leaf node 
has an associated prediction for the target variables. 
Predictions for a specific set of values taken by the explanatory 
variables are produced by traversing the tree, starting at the 
root node. At each non-leaf node, if the decision rule is 
satisfied, then the traversal continues at the left node, while if 
the decision rule is not satisfied, then the traversal continues at 
the right node. Once a leaf node is reached, the corresponding 
prediction is returned. See [14] for details on how these trees 
are fit. 

Random Forest (RF) estimators are formed by bagging 
decision trees. Bagging is a technique for improving the 
accuracy of an estimator in which copies of a data set are 
created by a bootstrap procedure. For each resampled data set, 
a corresponding copy of the estimator is fit. Some randomness 
is introduced into this fitting procedure to reduce correlation 
between the resulting estimates. The final estimator is 
produced by averaging these estimators. The averaging 
procedure improves the accuracy of the estimator by reducing 

the variance. For more details about RF estimators, see [15, 
16], and for more details about bagging see [17]. 

A GWRF is a RF estimator in combination with a 
geographical weighting scheme, similar to that used in 
Geographically-Weighted Regression [18, 19]. In GWRF, this 
weighting works as follows. A different RF estimator is fit for 
each set of weather and traffic conditions for which we wish to 
provide estimates of GDP performance. The explanatory 
variables are the specified parameters of the GDP, while the 
target variables are the performance criteria. When this 
estimator is fit, higher weight is given to observations that 
occurred in similar conditions, while lower weight is given to 
observations that occurred in dissimilar conditions. This weight 
is generated by transforming the distance between the 
conditions (as provided by the aforementioned measure of 
distance) with a kernel function, which transforms large 
distances into small weights and small distances into large 
weights. The GWRF method is central to our method for 
identifying the set of parameters that would achieve the correct 
balance of performance criteria. 

B. Using GWRF in GDP Planning 
The most straightforward manner of using the GWRF 

estimation method to produce a GDP given a set of conditions 
is as follows. First, fit a GWRF model for the given set of 
conditions using the available data on GDP parameters. Next, 
identify the set of GDP parameters whose predicted 
performance under the GWRF is closest to the consensus 
vector. The structure of the GWRF estimator is complicated, 
and it is not an easy problem to assign values for the 
explanatory variables in such a way that the predicted value is 
as close as possible to a given value. One possible heuristic 
would be to iterate through each observed set of GDP 
parameters, calculate the corresponding prediction, and select 
the set of GDP parameters whose predicted performance is 
closest to the consensus vector. As long as the training set is 
sufficiently complete and the consensus vector is attainable 
under the given conditions, then this procedure is likely to 
produce a GDP plan whose estimated performance is close to 
the consensus vector. Once the GWRF is fit, predictions for a 
given set of GDP parameters can be produced very quickly, so 
this approach is also computationally tractable for any 
realistically-sized data set of GDPs. We will refer to this 
procedure as the naïve greedy method. 

The naïve greedy method can be improved upon. One 
potential downside of the procedure is that the estimate of the 
GDP performance is not perfectly accurate, and furthermore, 
the accuracy may vary depending on the conditions and the 
selected GDP parameters. For this reason, it may be desirable 
to limit the GDP parameters under consideration to those 
whose performance can be estimated with relatively high 
confidence. We propose a method for implementing a 
constraint on the GDP parameters in section II.C. It also may 
be possible to find parameters whose estimated performance is 
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better than the consensus vector, which we discuss in section 
II.D.  

C. Prediction-Weighted Similarity Measure 
Since GWRF develops estimates of GDP performance 

from the available data, the reliability of the resulting 
predictions is dependent on the quantity of available data. 
Given a set of GDP parameters and a set of conditions, if many 
similar GDPs have been conducted in similar conditions, then 
we expect the estimation to be reliable. We can develop a 
measure of this as follows. Given a set of GDP parameters x 
and a set of weather and traffic conditions z, then the estimate 
produced by the GWRF can be expressed as: 

 𝑔𝑔�(𝑥𝑥; 𝑧𝑧) = ∑𝑤𝑤𝑖𝑖(𝑥𝑥; 𝑧𝑧)𝑦𝑦𝑖𝑖  (1) 

where the values 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 are non-negative weights that sum 
to one, and the values 𝑦𝑦1, … , 𝑦𝑦𝑛𝑛 are the performance measures 
in the observations of the data set. In other words, the 
estimated performance is given by a weighted sum of the 
performance of the observations in the data set, but the weights 
depend on the given situation and set of GDP parameters. If 
similar GDPs have been run in similar situations, then the 
method would assign high weight to those GDPs. However, if 
such similar observations do not exist, then the method must 
assign weights to less similar observations. Following this 
intuition, we propose a measure called the prediction-weighted 
similarity measure: 

 𝑠̂𝑠(𝑥𝑥; 𝑧𝑧) = ∑𝑤𝑤𝑖𝑖(𝑥𝑥; 𝑧𝑧)𝑠𝑠𝑖𝑖 (𝑧𝑧) (2) 

where the value 𝑠𝑠𝑖𝑖(𝑧𝑧) is a measure of similarity between 
weather and traffic conditions of the 𝑖𝑖th observation and those 
of z. The values 𝑠𝑠𝑖𝑖(𝑧𝑧) are already used in the construction of 
the GWRF prediction, so no extra work is required to define or 
compute these values. If the predictor primarily makes use of 
observations that occurred in similar situations, then the 
prediction-weighted similarity measure will be high, while if 
the predictor makes use of observations from less similar 
situations, this measure will be lower.  

D. Moving Closer to the Efficient Frontier 
When the COuNSEL mechanism identifies a consensus 

performance vector, it attempts to identify one that is close to 
the efficient frontier of attainable vectors. However, since this 
frontier is generally not known with certainty, it is possible that 
the mechanism can generate a dominated performance vector. 
Also, performance vectors could be generated by other means, 
possibly also resulting in dominated vectors. Here, when we 
say the performance vector is dominated, we mean that there is 
a GDP whose expected performance is better in all 
performance measures than the dominated vector. In this case, 
we would like to be able to find a GDP whose performance 

dominates the consensus vector. This would likely be more 
desirable.  

However, we must keep in mind that our estimates are not 
certain, and even if the estimated performance of some GDP 
dominates the estimated performance of another GDP, the true 
performance may not follow the same dominance relation. In 
order to account for this uncertainty, we use a scoring scheme 
similar to that described in [20]. Suppose there is some set of 
parameters S to which we wish to assign scores, and a set of 
weather and traffic conditions z. For each point in S, the 
dominance score is given by: 

 𝑟𝑟(𝑠𝑠; 𝑧𝑧) = ∑ 𝑃𝑃(𝑡𝑡 ≤ 𝑠𝑠; 𝑧𝑧)𝑡𝑡∈𝑆𝑆 + 1
2
𝑃𝑃(𝑡𝑡~𝑠𝑠; 𝑧𝑧) − 1

2
. (3) 

In this equation, 𝑃𝑃(𝑡𝑡 ≤ 𝑠𝑠; 𝑧𝑧) is the probability that the 
performance of a GDP with parameters s dominates a GDP 
with parameters t under the conditions z. The value 𝑃𝑃(𝑡𝑡~𝑠𝑠; 𝑧𝑧) 
is the probability that the performance of a GDP with 
parameters s neither dominates nor is dominated by that of a 
GDP with parameters t under the conditions z. This scheme 
assigns lower scores to points that dominate most other points 
with high probability and gives higher scores to points that are 
likely to be dominated by other points. Naturally, the 
probabilities used in this scheme are not known, so they must 
be estimated.  

We make use of the bagged estimators in GWRF in order 
to estimate these probabilities. As discussed in Section II.A., 
the GWRF is formed by independently fitting many decision 
tree models, each of which is fit on a different resampled data 
set. If all of these models predict that the GDP parameters s 
dominate the GDP parameters t, then we take that to indicate 
that s would dominate t with high probability. Thus, we define 
our estimate 𝑃𝑃�(𝑡𝑡 ≤ 𝑠𝑠; 𝑧𝑧) to be the proportion of the decision 
trees that predict that GDP s would dominate t under 
conditions z. We similarly define the estimate 𝑃𝑃�(𝑡𝑡~𝑠𝑠; 𝑧𝑧) to be 
the proportion of the decision trees that predict that neither set 
of parameters would dominate the other under the weather and 
traffic conditions z. 

E. A Constrained Greedy Selection Process 
We propose a method for selecting GDP parameters that 

combines a greedy selection process with the prediction-
weighted similarity measure (described in Section II.C) and the 
dominance-scoring scheme (described in Section II.D). We 
will refer to this method as the constrained greedy selection 
(CGS) method. The CGS method assumes that GDP 
parameters are desired for weather and traffic conditions z, that 
a GWRF for these conditions has been fit to the observed data, 
and that there is a known, desired threshold s* for the 
prediction-weighted similarity measure. In our method, we 
only allow selections of GDP parameters whose prediction-
weighted similarity (defined in Section II.C) is less than s*. 



ICRAT 2018 
 

The effect that this parameter has on results is discussed in 
Section III.B. 

The selection process in the CGS is defined as follows. Let 
z be the set of weather and traffic conditions in which we wish 
to plan a GDP. We take the set S of all observed GDPs in the 
data set to be the initial set of choices for the GDP parameters. 
Next, we calculate the prediction-weighted similarity for each 
choice of GDP parameters x, and any GDPs such that 𝑠̂𝑠(𝑥𝑥; 𝑧𝑧) is 
greater than s* are removed from S. From the reduced set S, we 
select a list L of promising choices of GDP parameters. This 
list is constructed so that the expected performance of the 
GDPs in the list increases in distance from the target 
performance and decreases in dominance score (as defined in 
section II.D). In other words, elements earlier in the list have 
performance that is closer to the target performance, but 
elements later in the list have better expected performance. In 
this way, we can provide a variety of options to the GDP 
planner, and the planner can select the GDP parameters that 
balance the overall performance of the method with the 
distance from the target vector. 

The first element that we place in the list L is the GDP 𝑥𝑥1 
from S whose estimated performance in the GWRF is closest 
to the target performance vector. If there are multiple such 
GDPs, then we select the one with the lowest dominance score. 
After this first element has been selected, we proceed as 
follows. We let xk+1 be the element whose estimated distance 
from the target vector is lowest amongst those elements whose 
dominance score is less than xk, if such an element exists. If no 
such element exists, then we stop. 

III. COMPUTATIONAL EXPERIMENTS 

A. Data and Setup 
For these experiments, we used data concerning ground 

delay programs that were implemented at Newark Liberty 
International Airport (EWR). Observed GDP parameters were 
taken from the FAA’s National Traffic Management Log 
(NTML) data, and the distances between the corresponding 
weather and traffic conditions were generated by the procedure 
described in [13]. Our data set includes 480 observations that 
occurred between 2011 and 2014. From these, 80% of the 
observations were randomly selected to constitute a training 
set, while the remaining 20% of observations were placed in a 
test set.  

We used a set of five GDP parameters, which are roughly 
consistent with work such as [12]. These are as follows: 

• Entry Time: the time at which the GDP is announced, 
which we express in the number of minutes after 4:00 
a.m. local time. 

• Earliest ETA: this is the earliest time at which flights 
receive restrictions. Any flight whose estimated 
arrival time is before the earliest ETA will not be 

controlled by the GDP. As with entry time, we 
express this time in minutes after 4:00 a.m. local 
time.  

• Duration: the length of time in which the GDP is 
planned to be in effect, expressed in minutes. 

• AAR Average: the averaged planned number of 
flights that are allowed to arrive at the airport for 
each hour in which the GDP is in effect. The units for 
this feature are flights/hour. 

• Number of Core 30 Airports Within Scope: every 
GDP has a declared scope, which describes a 
geographic region. Flights departing from outside 
this region are not controlled by the GDP. This 
feature describes the number of Core 30 airports that 
fall within this scope, where Core 30 is a list of the 
30 airports in the U.S. that have the most traffic. 

We use two measures of GDP performance. The first 
measure is the average arrival delay experienced by flights 
arriving at the impacted airport in the day. This measure was 
calculated from Aggregate Demand List (ADL) data. The ADL 
is maintained by the FAA and provides information about 
flights, such as estimated and actual arrival and departure 
times. The second measure that we use is the total number of 
holding events in the day, which is the number of times that a 
flight had to wait in the air to land at the impacted airport. This 
information is present in the Aviation System Performance 
Metrics Database, which is also maintained by the FAA. These 
two performance measures were chosen because they reflect 
two aspects of GDP performance that cannot be 
simultaneously optimized. A strict GDP will generally lead to 
fewer holding events but will cause higher arrival delays. 
Conversely, if the restrictions placed by the GDP are less strict, 
then there will be more holding events and lower arrival 
delays. While we believe these are reasonable measures of 
performance, there is ongoing research and discussion as to 
which performance measures are the most pertinent for GDP 
planning (see for example [9] or [11]). Since this method is 
data-driven, any performance measure could be substituted for 
these measures. 

The GWRF model that we use is fit and tuned as described 
in [12]. In all of the experiments discussed in this section, the 
training set is used to tune the model and serves as the set of 
observations for the CGS method and the naïve greedy 
method. Each observation in the test set provides a weather and 
traffic situation, a set of GDP parameters, and the actual 
performance achieved on that day. However, we do not use the 
GDP parameters in the test set in our computational 
experiments. Instead, we make use of the weather and traffic 
and the performance observations. We treat each observation 
of the performance in the test set as if it were the target 
performance vector. In this way, the test set provides a set of 
weather and traffic conditions and corresponding target 
performance vectors. 
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Figure 1.  Number selected by CGS, plotted against the threshold s*.  

B. Evaluation of Performance of CGS method. 
The results of the CGS method depend on the selected 

threshold for the probability-weighted similarity. A lower 
threshold means there is a tighter constraint on the parameters 
that are accepted while a higher threshold means that there is a 
looser constraint. If the threshold s* is high enough, then the 
first element selected by the CGS will be exactly the same as 
the naïve greedy method. As the threshold s* increases, the 
number of elements selected by the CGS decreases, and if the 
threshold s* is small enough then the constrained greedy 
procedure will not return any solution. The CGS procedure 
was run for each of the target vectors in the test set and for a 
variety of values of s*. The measure of similarity used in these 
experiments is that defined in [12], which is produced by 
taking an exponential function of the negative squared 
distance. This tends to make the resulting predicted-weighted 
similarities quite small, and makes it sensible to use a log scale 
for the similarity threshold. 

The average number of elements produced by the 
procedure is shown for each choice of threshold in Figure 1, 
and the proportion of test vectors for which the CGS 
successfully returns at least one element is shown for each 
threshold in Figure 2. When the threshold s* is set to values 
between 10-40 and 10-35, then the CGS almost always produces 
at least one element, and on average returns nearly 50 
elements. As the threshold increases from 10-40 to 10-10 the 
number of elements selected by the CGS decreases relatively 
slowly. When the threshold is greater than 10-10, this decrease 
happens at an increasingly fast pace. The proportion of tests for 
which the CGS selects at least one element follows a similar 
trend. These results indicate that as long as the threshold is set 
less than 10-11.5, then the CGS will be able to provide more 
options to the planner in most cases. 

 

Figure 2.  Proportion of tests for which the CGS selects at least one element, 
plotted against the threshold s*.  

The relative quality of the options provided by the CGS is 
demonstrated in Figures 3 and 4. By definition, any element in 
the results produced by the CGS must have expected 
performance that is further from the target performance vector 
than the naïve greedy method. For each threshold s*, Figure 3 
shows the percent increase in distance from the target vector 
when comparing the naïve greedy result with the element of 
the CGS whose expected performance is closest to the target 
(for those test instances in which the CGS selected at least one 
element). This trend is similar to that of the proportion of tests 
in which the CGS selects at least one element and the average 
number of elements selected by the CGS. When the threshold 
s* is less than 10-11, then the closest element selected by the 
CGS is not much further than the one selected by the naïve 
greedy result. For threshold values greater than 10-11, the 
distance between the CGS element and the target vector 
increases sharply. Figure 4 shows the relative change in 
dominance score between the naïve greedy solution and the 
CGS element with the lowest score, plotted against the 
threshold s*. When the similarity threshold is relatively low, 
the CGS method is able to identify solutions whose score is on 
average less than half of the score of the naïve greedy solution. 
As the threshold increases, this improvement in score tends to 
get smaller, but even for relatively large thresholds (i.e. when 
s* is less than 10-5.5), the CGS method is able to identify GDP 
parameters whose estimated performance has a lower 
dominance score than the naïve greedy solution. 

In summary, the performance of the CGS method is 
dependent on the similarity threshold s* that is allowed. 
However, for a wide range of values for this parameter, the 
CGS method is able to identify GDP parameters whose 
estimated performance is close to the target vector and is able 
to identify GDP parameters whose dominance score is lower 
than those produced by the naïve greedy solution. 
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Figure 3.  Average percent increase in distance from target performance of 
CGS method compared with naïve greedy method, plotted against the 

threshold s*.  

C. Example of Results From Selected Days 
In order to demonstrate the utility of this method, we display 
the results of this method when applied to two days, 
specifically November 14th, 2011 and May 28th, 2013. As 
before, the actual performance achieved on these days is used 
as the target vector. These days were chosen because on the 
latter day the achieved performance appears to be close to the 
efficient frontier, while on the former day the performance 
appears to be further from the frontier. Thus, examining these 
two days can provide some intuition about how the method 
performs in these two situations. For both of these days, we 
ran the CGS method with two values of the threshold s*, 
specifically 10-5 and 10-10 respectively.  
 

The results from the CGS method are plotted in Figure 5. In 
each plot, the target performance is displayed as a black `x’, 
the expected performance vectors of the GDP parameters 
selected by the CGS are shown as larger orange circles, and 
the expected performance of the naïve greedy solution is 
shown as a magenta triangle. In order to provide some 
context, the expected performance vectors for the forty 
choices of GDP parameters with the highest prediction-
weighted similarity scores are plotted as small blue circles. On 
November 11th, 2014 there are many potential choices of GDP 
parameters that seem to dominate the target prediction vector. 
When the threshold s* is smaller, the CGS identifies many 

potential choices for GDP parameters. Even when the 
threshold is relatively large, the CGS is still able to identify 
some GDP parameters that dominate the target performance. 
On May 28th, 2013 the target performance seems to be closer 
to the boundary of attainable performance, and the CGS 
identifies fewer potential choices of parameters. For the 
smaller value of the threshold s*, the CGS method is still able 
to identify an ample set of parameter choices. The CGS 
method does not produce any choices of parameters when the 
threshold is set to the larger value. That is, there are no 
historically-observed GDPs whose prediction-weighted 
similarity score is greater than 10−5. This indicates that there 
are more data available on conditions similar to those present 
on November 11th, 2014 than those present on May 28th 2013. 

Figure 4.  Average percent change in dominance score of CGS method 
compared with naïve greedy method, plotted against the threshold s*.  

IV. CONCLUSION 
We propose a new method to identify a set of GDP 

parameters whose estimated performance is close to a target 
vector of performance objectives. In addition, our method also 
ensures that the parameters selected have estimates that are 
well-supported by the available data, and is able to identify 
alternatives that may dominate the target vector. We compared 
our method against a greedy approach, and we demonstrated 
that our method is able to provide more options and can often 
identify solutions whose performance is likely to dominate 
that of the greedy method.  
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This method could be used in conjunction with a 
collaborative decision-making mechanism such as COuNSEL. 
More broadly, our method could be incorporated into other 
types of decision-support systems. Further study is necessary 
for this method to be implementable in practice. The results 
from this method are dependent on the threshold s*, so some 
work would be required to identify an appropriate value for 
this parameter. As we discussed, in some cases the CGS fails 
to produce a solution. This indicates that the observations 
occurring in situations similar to the situation in which the 
method is run are not sufficient to provide stable estimates of 
GDP performance. In this case, an alternative method is 
required. There is also more work that could be done in the 
presentation of these methods, so that the results can be 
displayed in an easier-to-interpret manner.  

 
In this work, we considered the problem of planning a single 
GDP at a single airport. There are other types of traffic 
management initiatives that this method could be applied to, 
such as airspace flow programs. Similar methods could also 
be developed to coordinate multiple traffic management 
initiatives, or to help produce more comprehensive types of air 
traffic management plans. 
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Figure 5a: Results from November 14th, 2011; s* set equal to 10-5 

 

 
Figure 5b: Results from November 14th, 2011, s* set equal to 10-10 

 

 
Figure 5c: Results from May 28th, 2013; s* set equal to 10-5 

 

 
Figure 5d: Results from May 28th, 2013; s* set equal to 10-10 

 
Figure 5.  Results from CGS. Target performance vector is plotted as an `x’; greedy solution is plotted as a triangle; the expected performance of the GDP 
parameters selected by the CGS method are plotted as larger orange circles, while the expected performance of the choices of parameters with the highest 

similarity score are plotted as smaller blue circles. 
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