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Abstract—The Federal Aviation Administration uses traffic 
management initiatives to prevent excessive congestion of 
airspace resources. We present a method that would aid in the 
planning of traffic management initiatives by identifying a 
representative set of initiatives that have been run in the past. In 
a more general unsupervised learning context, this method could 
be used to identify a small set of data points that are 
representative of the entire data set. 

Keywords-air traffic management; traffic management 
initiatives; unsupervised learning; clustering; representative data 

I.  INTRODUCTION 
Our goal is to provide a method that will increase the 

availability of data support for planning Traffic Management 
Initiatives (TMIs), which are used to prevent congestion of 
high-demand airspace resources. In order to implement a TMI, 
a decision-maker usually must choose values for several 
parameters. These may include the time interval that the TMI 
will be in effect, the set of flights that are controlled by the 
TMI, and the number of flights that are allowed to access the 
restricted resource. The decision-maker may wish to inform 
their decision by consulting a list of previously-implemented 
TMIs. However, the list could be very large and varied, 
making manual examination difficult. We would like to take 
such a list and produce a much smaller set of TMIs that 
summarize the entire list. This short list would be more easily 
examined for the purpose of TMI decision-making. In order to 
aid interpretation, it is important that the TMIs in the list are 
TMIs from our original dataset. It is also important that a 
decision-maker has some control over the number of TMIs that 
are displayed, as well as some feedback as to how precisely the 
chosen TMIs represent the original data. We provide a method 
that meets these criteria. 

We would like to implement this method as part of a 
decision-support tool under development in a NASA-funded 
research project. This tool would start by soliciting from the 
user a reference day. If real-time operations are being planned, 
the user would use the current day as the reference day, or the 

user would choose some historical day if the intent is to 
conduct post-operations analysis.  The tool would then find a 
(perhaps large) set of other historical days that were similar to 
the reference day from the perspective of traffic and weather 
characteristics.  The methods described here would then take 
the set of TMI actions that were taken on the similar days and 
would construct a short but representative ‘menu’ of possible 
TMI actions that could be presented to the operator for further 
consideration. The menu could also display supporting 
historical information, such as the system-wide performance 
that each representative TMI action produced. 

In general, we may consider the problem of taking a set of 
data and choosing a much smaller number of observations 
from that set to be ‘representative’ observations. This is 
primarily for the purpose of data exploration. If a user is 
presented these representatives, perhaps with extra information 
attached to each representative, the user should be able to get a 
good sense of the general shape or variety of the data. As far as 
the authors are aware, there is no existing published work that 
treats this exact problem. However, clustering algorithms have 
been used for this purpose in the past. 

In our applications, it is important that the resulting 
representative data be strictly a subset of the original data. 
Some cluster algorithms characterize each cluster with a 
representative that is a member of the original dataset. These 
methods are the most analogous to our method, and results 
from these methods can be compared directly. Other cluster 
algorithms produce cluster representatives that are not 
members of the original dataset or do not produce cluster 
representatives at all. It is more difficult to see the relevance of 
these algorithms to the problem of finding representatives. 

II. LITERATURE REVIEW 

A. Representatives in Air Traffic Flow Management 
There have been instances in the air traffic management 

literature in which authors attempted to create small instances 
that are representative of some larger dataset. In [1], a set of 
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ground delay programs were clustered using the k-means 
algorithm. The cluster centroids were treated as representatives 
and used in simulations. The k-means algorithm has been used 
in a similar fashion to produce vectors of hourly airports 
capacities with the intent of using these vectors as scenarios in 
simulations or in optimization models [2], and has also been 
used to find ‘typical days’ in terms of weather conditions [3]. 
There are some disadvantages to the k-means algorithm that 
our method attempts to remedy. For example, k-means is only 
applicable when Euclidean distance is used, and it produces 
centroids that are probably not in the original dataset. 

B. Clustering 
The authors are not aware of any literature that addresses 

the general problem of trying to find representative data points 
in a data set. The nearest methodological analogue is 
clustering, which has a vast and well-developed literature. The 
goal of clustering is to partition the data set so that similar 
points are placed in the same cluster while dissimilar points are 
placed in different clusters. Some methods produce a cluster 
representative for each cluster. The cluster representative, 
which may or may not be an element of the original dataset, is 
the most representative point of the cluster by some criteria. 
The set of cluster representatives could potentially be used as a 
list of representative data points. Some clustering algorithms 
produce no such representatives. The production of cluster 
representatives is not generally the goal of a clustering 
algorithm. Conversely, we do not find representatives with the 
intent of assigning each data point to a representative. Instead, 
the goal of finding representatives is to find the set of data 
points that would be most useful if all other data points were 
removed from consideration. We will not attempt to define 
what ‘most useful’ means, as this is inherently subjective and 
depends greatly on the application. 

While a thorough review of the clustering literature is well 
beyond the scope of this paper, many good references exist. 
For example, see [4] or Chapter 8 of [5]. We will present two 
methods for finding representatives. The first of these methods 
involves forming a graph and solving a graph optimization 
problem. In this respect, it is similar to spectral clustering 
methods and other graph-based clustering methods. See [6] for 
a tutorial on spectral clustering, or [7] for a more general 
survey on graph-based methods. The optimization problem 
arising in our second method is equivalent to a method for 
clustering proposed in [8]. However, the results are applied in a 
different manner, and we propose a different solution method. 

C. Minimum Dominating Sets and the k-center problem 
In some cases, we will frame the problem of finding 

representatives as a minimum dominating set problem. Let 
there be a graph G with vertices V. A subset S of the vertices V 
is a dominating set if for any vertex u of V then either u is an 
element of S or u is adjacent to an element of S. A minimum 
dominating set is a dominating set that is of minimum size. 
There is a well-developed body of literature on minimum 

dominating sets from a graph theory and computational 
complexity perspective. Reference [9] gives a thorough 
treatment of this topic, as well as a long list of references. 
Alternatively, [10] provides an extensive bibliography. Some 
heuristics have been proposed and studied for the minimum 
dominating set problem ([11], [12], [13]). As far as we know, 
the minimum dominating set problem has not previously been 
used for clustering, nor has it been used for any problem 
closely resembling the problem of finding representatives. 

Under other circumstances, we will instead propose the 
closely related k-center facility location problem. In this 
problem, the goal is to place k facilities to minimize the 
maximum distance that any customer would have to travel in 
order to reach the nearest facility. There are exact methods for 
the k-center facility location problem ([14], [15], [16], [17], 
[18]) as well as approximation algorithms and heuristics ([19], 
[20], [16], [21], [22], [23], [8], [24]). As mentioned above, [8] 
also proposed a clustering algorithm that approximately solves 
the k-center facility problem. We provide a different 
motivation for this problem, and we also provide a different 
manner to interpret the results. 

III. METHODS 

A. Minimum Dominating Set (MDS) Method 
1) Similarity Graph 

We begin by constructing a similarity graph from our data. 
The set of vertices contains one node for each data observation, 
and there is an edge between two observations if they are 
‘similar’ in some sense chosen by the user. Some clustering 
methods such as spectral clustering also require a similarity 
graph, so there are some commonly-used methods for judging 
similarity. For example, [6] mention the following two 
methods: 

• ε -neighborhood. We assume that we have a measure of 
distance ( ),d u v  for observations u and v. Then, we say 
that u and v are similar if ( ),d u v ε<  for some chosen 
positive real number ε . Common measures of distance 
include Euclidean distance or taxi-cab distance, possibly 
with some normalization or rescaling. 

• k-nearest neighbors. Again, we assume we have a 
measure of distance between each pair of observations. 
For each point u, we find the k points that are closest to 
u. These are the k-nearest neighbors of u. Note that is 
possible for v to be a k-nearest neighbor of u, yet u not 
to be a k-nearest neighbor of v. This inspires two 
different similarity rules. In the first variation, we say 
two observations are similar if one is a k-nearest 
neighbor of the other, while in the second variation we 
say that two observations are similar if they are both k-
nearest neighbors of each other. 



In many datasets, the features may have completely 
different units. For example, one feature of a TMI is the time 
that the TMI was initiated and another feature is the number of 
flights that are allowed to access some resources in a given 
time period. For this reason, Euclidean distance or Taxicab 
distance is difficult to interpret, and we recommend the 
following similarity method: 

• feature-wise ε -neighborhood. For each feature f, 
choose a positive, real number fε . Let fu  and fv  be 
the values of feature f from observations u and v, 
respectively. We say u and v are similar if and only if 

f f fu v ε− ≤  for all f. 

The feature-wise ε -neighborhood is a special case of ε -
neighborhood where the distance is given by rescaling features 
and then taking the infinity norm. We mention it separately 
because this distance measure is more difficult to interpret than 
the similarity relationship described here. 

2) Minimum Dominating Sets 
We would like our representative data points to include the 

variety present throughout the entire data set. For this reason, 
we require that every observed data point be similar to one of 
our representatives. There are many choices of representatives 
that would satisfy this requirement. For example, we could 
choose the entire data set to be our choice of representatives. In 
some sense, this would be the choice that best represents the 
original data. Of course, this choice is also completely 
unhelpful for a human researcher who wants to understand the 
data better. The smaller the number of representatives, the 
easier it will be for the human to examine the representatives. 
For this reason, we will search for the minimum set of 
representatives that satisfies the domination requirement. Let G 
be the similarity graph and let V be its vertices. Our problem is 
to find a subset R of V such that: 

1. For any vertex v of V, then either v is an element of R or 
V is adjacent to an element of R. 

2. For any subset T of V that satisfies (1. ), then R T≤ . 

This is exactly the minimum dominating set problem. A 
solution to this problem is a minimum dominating set (MDS). 
The number of vertices in an MDS of a graph is known as the 
domination number. An MDS is not necessarily unique - any 
graph may have multiple minimum dominating sets. In the 
absence of any secondary discriminating criteria, we will 
accept any such set.  

3) Solution of the MDS problem 
The decision problem of whether a dominating set of size k 

exists in a general graph is known to be NP-Complete ([25]). 
Therefore, the MDS problem is NP-Hard and polynomial-time 
algorithms are unlikely to exist. Let G be a graph, let V be its 
vertices, and let N(v) be the neighborhood of the vertex v in G. 

We may find an exact solution for the MDS using the 
following integer program: 
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The binary variable vx  takes a value of one if the vertex v 
is included in the set of representatives. The objective 
minimizes the size of the set, and the constraint enforces that 
each vertex is adjacent to a representative vertex. As we would 
expect in an NP-Hard problem, the solution to the LP 
relaxation may have fractional elements. This may render the 
exact solution of this IP infeasible for large problem instances. 
Alternatively, we could use one of several previously proposed 
heuristics discussed in the literature review section. These 
generally produce a dominating set, which is not necessarily 
minimal. 

B. The k-Center method 
Consider an alternative setting, where we have a distance 

score for each pair of points. We could form an ε -
neighborhood similarity graph, as previously mentioned, but 
perhaps we are not sure what value we should choose for ε . 
Instead, we could choose a desired maximum number of 
representatives k. This is particularly appealing from a human 
factors point of view because an application interface might 
have limited space to display results and a human operator 
presented with an excessive number of representatives will 
become overwhelmed. This presents a natural constraint on the 
size of the representative set. 

We could choose a value of ε  and form an ε -
neighborhood similarity graph, then use the MDS method to 
produce a set of representatives. Consider what happens as we 
change the value of ε . When ε  is equal to 0 then the 
similarity graph is completely disconnected and the only MDS 
is the set of all data points. As ε  increases, we add edges to 
the similarity graph and the size of a MDS decreases, until the 
similarity becomes completely connected and a MDS consists 
of a single point. The choice of ε  allows us to balance the size 
of the set of representatives with how precisely the 
representatives describe the data. 

The requirement that we have at most k representatives 
provides a desired level of conciseness. Presumably, we would 
like to find the most precise set of representatives that still 
satisfies the conciseness requirement. Since increasing ε  will 
decrease precision and improve conciseness, we should choose 
ε  to be the smallest value such that the MDS method produces 
at most k representatives. 



As it turns out, the problem of finding the smallest ε  such 
that the ε -neighborhood similarity graph has a dominating set 
of size k is equivalent to an existing problem known as the k-
center facility location problem. This relationship was 
observed in [18]. In the k-center facility location problem, we 
have a set of points and we choose k points to be facilities. Our 
goal is to choose the facilities such that we minimize the 
maximum distance from any point to its nearest facility. 

This provides an alternative interpretation of this method. 
We could measure how well a given point is represented by 
finding the minimum distance from this point to any 
representative. The maximum of all these distances would then 
be a measure of the quality of our representatives in general. 
We are then trying to find the set of representatives that 
minimizes this maximum distance. This problem was proposed 
as a method of finding cluster centers in [8]. 

1) Solution of the k-center problem 
The k-center problem is an NP-Hard problem ([26]), so we 

do not expect that polynomial-time algorithms for solving the 
k-center problem exist. There are a number of heuristics, 
approximation algorithms, and exact algorithms mentioned in 
the literature review. We implemented the exact algorithm 
described in [15]. The solution times for this algorithm seem to 
be sufficiently fast for the purposes of our application, as the 
involved datasets are relatively small. However, heuristics 
would likely be necessary for large datasets. 

2) Defining distance 
Similarly to the MDS method, there is some question of 

how to define distance when some features are incomparable. 
We suggest the following method for numerical data. Let X be 
the set of observations. For each pair of observations u and v, 
and for each feature f, calculate the difference f fu v− . Sort 

the pairwise differences, and let ( ),fp u v  be the percentile of 

the pair ( ),u v  with respect to the difference f fu v− . That is, 
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Then, define the distance ( ),d u v  by:  

 ( ) ( ), max ,ff
d u v p u v=  

The distance ( ),d u v  finds the feature in which u and v 
differ the most when compared to other pairs of observations. 
The distance then reports the percentile-rank of ( ),d u v  in 
terms of that feature difference. The disadvantage of this 
method is that if we wish to find the distance between any pair 
of points, it requires finding all pairs of differences and sorting 
them. This produces a time complexity of ( )2 logO N N , 

where N is the number of data points. In large datasets, this 
will not be computationally tractable. We can instead calculate 
the estimated percentile rank of each pair based on a sample of 
our data. Let Y be a set of data points sampled from X, either 
by bootstrapping or by choosing a random subset. Then, we 
can calculate the distances similarly as:  
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with the same distance metric as before, but applied to the 
estimated percentile ranks. This measure of distance is not 
affected by linear rescaling of the data. It is also robust to 
outliers, as an extreme observation in some feature will not 
greatly affect the percentiles of the other observations in that 
feature. These methods also allow us to easily interpret the 
solution to our k-representatives problem. Let *ε  be the 
distance in the solution. For a feature f, let fδ  be the *ε -
quantile of the feature f. Then we know that for each 
observation x, there is a representative r such that 

f f fx r δ− ≤  for all features f. 

3) Similarity scores 
Consider alternatively a case where we have a similarity 

score ( ),s u v  for each pair of points. We can define a similar 
k-center problem that we can solve with the same method. Let 
the ε -plus-neighborhood similarity graph be the graph such 
that u and v are adjacent if their similarity is greater than ε . 
We might wish to find the maximum ε  such that the ε -plus-
neighborhood similarity graph has a domination number of at 
most k. We can solve this problem using the same method we 
have previously described.  Simply let g be any invertible, 
strictly decreasing function, and define the distance letting 
( ),d u v  equal ( )( ),g s u v . Then, we may proceed as 

previously described, and obtain an optimal distance value ε . 
We may then convert the optimal value ε  back into a 
similarity value by finding ( )1g ε− . 

C. Prevalence 
The representatives that we produce are not necessarily all 

of equal importance. For some representatives, there may be 
many similar observations in our data set, while other 
representatives may have few similar data points. We define a 
measure, which we call prevalence, to reflect this. 

In the MDS method, let G be the similarity graph. In the k-
representatives method, take G to be the ε -neighborhood 
similarity graph produced by the optimal value of ε . Let R be 
the set of representatives. We may define the set S(r) to be the 
set of vertices adjacent to r in G. Since R is a dominating set, 
then each vertex must be included in S(r) for some vertex r in 
R. However, this is not necessarily a clustering, as some of the 



sets may intersect. We define the prevalence of a representative 
r to be the value |S(r)|. This the number of observations that are 
similar to the representative r. Representatives whose 
prevalence is high can be interpreted as representing common 
cases, while representatives of low prevalence can be 
interpreted as representing unusual or anomalous cases. 
Including both possibilities is extremely important in the 
decision support context: the most common historical 
occurrences are not necessarily the best. Coupled with some 
exogenous performance data, a representative of low 
prevalence may be extremely important for the decision-maker. 

IV. PROPERTIES OF THE MDS AND K-CENTER 
REPRESENTATIVE METHODS 

A. Data coverages 
The defining properties of the MDS and k-center 

representative methods are their coverage guarantees. The 
MDS method guarantees that each data point will be similar to 
a representative according to a chosen measure of similarity, 
and that we provide a smallest set of representatives that 
satisfies this condition. The k-center method guarantees that 
each data point will be within a distance of ε  from a 
representative and that there is no choice of k representatives 
that would provide a smaller distance. The downside of this 
method is that NP-hard problems must be solved in order to 
provide these guarantees. It may not practical to solve these 
problems exactly on larger datasets. In order to gain 
computational efficiency, we must turn to heuristics. However, 
some coverage guarantees will still exist. For the MDS 
method, we may use heuristics that provide a small dominating 
set, in which case we may say that each data point is similar to 
a representative, although we cannot guarantee that a smaller 
such set does not exist. For the k-center method, we still will be 
able to provide an ε  such that each data point is within ε  of a 
representative. However, we would not be able to claim that 
we have attained the smallest possible distance ε . 

B. Local Density 
A key difference between our proposed methods and some 

existing centroid-based clustering algorithms is that the density 
of points within a small region of the data does not greatly 
affect the representatives that are produced. To make this 
notion clear, consider a data set X. Consider some data point x 
in X, and consider what would happen if we add data points 

1 2, , , nx x x  that take the same feature values as x but that are 
treated as separate observations. This addition would not affect 
the representatives produced by either the MDS method or the 
k-center method. However, in methods such as k-means or 
mean shift, the addition of the new data points will draw the 
centroids closer to the point x. Thus, we expect that the 
representatives of our methods will be spread evenly across the 
regions where points occur, regardless of how many points 
occur locally in those regions, while many other clustering 

methods will tend to place more centroids in higher-density 
regions. In some applications, it may be desirable to have more 
representatives from the high density regions. We believe that 
in our application, there is more benefit from having a more 
general coverage of the data at the cost of less representation in 
the higher-density areas. However, practitioners should use 
their best judgment as to whether or not this would be 
appropriate in their application. 

C. Data Membership 

Our method will always produce representatives that are 
members of the original dataset. This is true of some existing 
clustering methods such as affinity propagation, but other 
methods such as k-means or mean shift often produce cluster 
representatives that are not in the original dataset. Other 
existing clustering methods including spectral clustering and 
hierarchical clustering do not even produce representatives. 
This property is especially useful when some features are 
numerical, but are restricted in the values they can take. For 
example, some features may take only integer values. Our 
method will always produce valid data points in these cases. 

D. Flexibility in modeling 
A practitioner has a choice of similarity in the MDS 

method or a choice of distance in the k-center method. Some 
existing clustering methods also allow this, including many 
hierarchical clustering methods, spectral clustering, and 
affinity propagation. Other clustering algorithms such as k-
means and mean shift do not. In our application, Euclidean 
distance is very difficult to interpret because the features have 
disparate units. For this reason, it is important to be able to use 
other measures of distance. 

V. EXAMPLE: GROUND DELAY PROGRAMS AT EWR 
We will compare our method to existing clustering 

algorithms that produce representatives. Our dataset contains a 

 
Figure 1: Ground Delay Program Features at EWR 



set of ground delay programs (GDPs) from the FAA advisory 
database. A GDP restricts the rate at which flights are allowed 
to arrive at an airport by delaying flights pre-departure, thus 
reducing congestion at the arrival airport. In order to easily 
visually examine our dataset, we will restrict our attention to 
two parameters. The first is the average number of flights 
allowed to arrive per hour at the destination airport, which we 
will refer to as the average rate. The second feature is the 
number of minutes during which arrivals to the airport will be 
restricted. The dataset we will use consists of every GDP that 
appears in the FAA advisory database from January 1st, 2007 
to December 31st, 2014. The FAA may revise GDPs after they 
are issued. We do not include these revisions in our dataset, so 
our features consist of the first parameters associated with each 
GDP. There are a total of 1302 GDPs in the dataset. 

A plot of the dataset is shown in figure 1 on the previous 
page. Based on visual examination, the data set seems to 
consist of a single cluster. This cluster consists of a high-
density core, surrounded by lower density regions. We 
implemented an exact k-center method ([15]) in Python and 

applied it to this data. We also ran the k-means, mean shift, and 
affinity propagation clustering algorithms, using the 
implementations in the Scikit-learn package for Python ([27]). 
These results are shown in figure 2, shown above. 

The distance measure for the k-center method was 
calculated according to the percentile-rank method described in 
section 3. 2. 2. The affinity propagation method requires a 
similarity score ( ),s x y  for each pair of points x and y in the 
dataset X. We set ( ),s x y  to be ( )1 ,d x y− , where ( ),d x y  is 
the distance according to the percentile-rank method. The 
affinity propagation method also requires an input for each 
point called the preference. Common choices for the 
preference include the minimum or median of the similarity 
scores. We tried both options. When the preference was set to 
the minimum value of the similarity score then all data points 
were placed in a single cluster, so we instead show the results 
with the preference set to the median similarity score. We 
chose k equal to 9 for the k-center method and the k-means 
algorithm, as we feel this would be a reasonable number of 

 
Figure 2a: proposed k-center method 

 
Figure 2b: k-means 

 
Figure 2c: mean shift 

 

 
Figure 2d: affinity propagation 

 
Figure 2: comparison of methods for producing representatives 

 
 
  
 
 



representatives to present to a decision-maker in our 
application. All other parameters in all methods were left to the 
default settings. In all cases, we rescaled each feature as a z–
score before applying clustering. This scaling was then 
reversed to produce the resulting figures. 

For the clustering algorithms, the cluster representatives are 
shown as large black points and the non-representative cluster 
members are shown as smaller points whose color corresponds 
to their cluster membership. The representatives produced by 
our proposed k-center method are shown as large colored 
points. The colored rectangle surrounding a representative 
gives the region of points that are within the optimal coverage 
distance from the representatives. 

Neither the mean shift algorithm nor affinity propagation 
produce results that are well-suited for our application. The 
mean shift algorithm provides only three representatives. The 
majority of the high-density region is represented by a single 
point, which does not give many options for a controller 
attempting to make TMI decisions. The affinity propagation 
clustering method produces an overwhelming number of 
representatives. This would be difficult for a practitioner to 
consider. Potentially, we could choose a different value for the 
preference that could produce a more amenable set of 
representatives, but it is not clear what this choice of 
preference would be. 

The k-center and k-means algorithms produce a more 
reasonable number of representatives, which seem to be spread 
reasonably across the areas where data occur. There are two 
main differences between the representatives produced by the 
k-means clustering as and those in our proposed k-center 
method. First, the k-center method produces representatives 
that are in the original dataset, while k-means does not. The 
representatives k-means produces may not be valid GDP 
parameter choices, which makes it harder to use these to make 
TMI decisions. The second difference is that the k-center 
method has more coverage of the lower density regions and 
less coverage of the higher density. This is not necessarily an 
advantage in all applications. We believe that in the case of our 
application, this will provide TMI decision-makers with a 
wider variety of options to consider and a more thorough 
knowledge of what actions have been taken in the past. We 
hope that this will allow them to make better decisions. 

VI. CONCLUSIONS AND FURTHER WORK 
We discussed the problem of finding a set of 

representatives from a set of data points, and we proposed two 
related methods for this problem. The MDS method was 
developed for this problem, while the k-center method had 
previously been proposed for clustering. The representatives 
produced by these methods are always members of the original 
dataset. Along with the representatives, the methods produce 
coverage guarantees. If the dataset is small enough that we 
may use exact methods, then the coverage guarantee is also 
optimal in some sense. On larger datasets, we still produce 

coverage guarantees, but they are only approximately optimal. 
The MDS method is resistant to outliers. While the k-center 
method is not as resistant to outliers, it may be used to detect 
and remove outliers. Compared to k-means clustering, the k-
center method will tend to provide better coverage of the low-
density regions of data while providing sparser coverage of the 
high-density regions. 

We also proposed a method of determining whether two 
points are similar and some methods of assigning a distance to 
two points in a dataset. These methods provide more 
interpretable results than existing methods in the case when 
units of separate features are drastically different. We suggest a 
measure of prevalence of a representative to aid in 
interpretation of the results produced by our methods. 

The k-center method may be solved exactly on small 
datasets, and existing heuristics are scalable to moderately 
large datasets. However, existing heuristics for the k-center 
facility location problem tend to assume that the distance 
between any pair of points may be computed. This would not 
be tractable for larger datasets. Thus, we would need to 
develop new heuristics for the k-center method if we wish to 
apply it to extremely large datasets. Similarly, the heuristics for 
the MDS problem have been studied for graphs that are 
relatively small compared to the size of many large datasets. It 
may also be necessary to develop new heuristics to solve the 
MDS problem on these larger datasets. 

While we understand the qualitative differences between 
the results of our methods as compared with other methods, 
there is more that we could do to validate how well our 
methods perform. In the case of our TMI application, we could 
solicit feedback from subject matter experts about which sets 
of representatives would be more useful. 

It is clear how our method may be applied to a set of TMIs 
that are all of the same type. If we are given a list that only 
contains GDPs, we may apply this method immediately. 
However, there are other types of TMIs that are used, such as 
ground stops and airspace flow programs. Each TMI may also 
be revised, extended or cancelled. More study would be 
necessary to provide a method that would be applicable to lists 
of TMIs that include multiple types of TMIs or that include 
TMIs that are modified over time. 

There is also more work that we could do after the 
representatives have been generated in order to make them 
more useful to a TMI decision-maker. For example, we could 
construct an estimate of the historical performance of a 
representative TMI based on the TMIs that are with the optimal 
k-center distance. We hope to implement these features in a 
decision-support tool that would make it easier to examine 
historical TMIs. This tool would then be used to aid the 
planning of TMIs as well as to aid in the review of a TMI after 
it has been implemented. 
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