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Abstract— Models are proposed to estimate the performance of 

Ground Delay Programs as air traffic management initiatives. 

We apply Random Forest and Gradient-Boosted Forest 

regression techniques within the context of Geographically 

Weighted Regression. We estimate both the mean and 90th 

percentile responses for two performance indicators: average 

arrival delay and the number of cancelled arrivals. 

Keywords-ground delay program; delay prediction; air traffic 

management 

I. INTRODUCTION 

When severe weather or other circumstances affect the 
ability of an airport to accept arriving flights then the 
scheduled arrivals can exceed the capacity of the airport. In 
order to prevent an unsafe situation from occurring, the 
Federal Aviation Administration will issue a Ground Delay 
Program (GDP). This issues delays to flights that are still on 
the ground, so that these flights may arrive at a time when 
there is sufficient capacity.  

There is a large body of existing research on planning 
GDPs, optimizing them, determining appropriate air carrier 
responses, and other issues related to this particular type of 
traffic management initiative. A useful piece of that puzzle, 
that this paper aims to address, is being able to predict the 
performance of a particular candidate GDP, given a set of 
traffic and weather conditions. A number of performance 
metrics could be interesting, and here we focus on delays and 
flight cancellations. 

The main purpose of producing these estimates is to help 
decision-makers plan GDPs. The work described here is part 
of a larger effort to build a decision support tool for planning 
traffic management initiatives. While the work will be 
described in that context, it could also be applied as a module 
for different situations where GDP performance predictions 
would be useful. 

The tool we are pursuing will identify historical days with 
conditions similar to the current day, and then produce a set of 
GDPs that would be representative of the variety of GDPs that 
had previously been deployed on those historical days. The 
work in this paper is intended to be used to estimate the 
performance that the representative GDPs would experience if 
re-applied on the current day. This would allow the decision-
maker to evaluate which historical GDP had the best prospects 

for good performance. There are other ways this could be used 
to aid in the planning or evaluation of GDPs. For example, 
these methods could be used in a what-if analysis tool where 
GDP decision-makers could propose GDPs (rather than 
mining them from the historical record) and receive estimates 
of the predicted performance. 

There is a substantial body of work that seeks to predict 
delays in the national airspace system. Much of this work 
makes its predictions primarily based on weather and traffic, 
and makes little or no use of GDP features. See for example 
[1], [2], [3], [4], [5], or [6]. This work would have limited 
direct use in the prediction of GDP performance. There are 
also some existing queue-based or network-flow-based 
methods that estimate the amount of delay that a GDP would 
produce, such as [7], [8], and [9]. 

If we were solely interested in delay as a measure of GDP 
performance, then these methods would perhaps be sufficient. 
However, recent research in air traffic flow management has 
advanced the idea that GDPs and other traffic management 
initiatives are multi-objective problems. Five performance 
criteria measuring different aspects of GDPs were provided by 
[10] and a model for GDP planning that includes two metrics 
of performance was examined in [11]. A mechanism was 
proposed in [12] and [13] that considers three performance 
metrics. This mechanism would allow flight operators to 
express their preferences for combinations of these metrics, 
and would then produce a GDP plan. 

Our proposed methods are black-box methods. That is, the 
methods do not involve explicitly modelling or simulating 
elements of the national airspace system. Instead, our methods 
build estimates of performance purely using historical data of 
the GDPs that were taken, the conditions that these actions 
were taken in, and the resulting performance metrics. Thus, 
the method can be used to estimate any metric with no 
modification while the aforementioned queue-like models 
would require substantial modification. As far as we are 
aware, our methods are the first black-box methods that have 
been proposed for this purpose. Thus, our methods would be 
more readily applied to the implementation of a mechanism 
such as in [12] and [13], and could generally be more 
informative to decision-makers who are interested in 
objectives other than delay. There is a further advantage to our 
models in that they make use of observed performance 
outcomes from GDPs and are able to learn from these 



outcomes, while the queue-like or network-flows-like models 
do not.  

Our paper proceeds as follows. In section II, we describe 
our proposed methods for estimating GDP performance 
measures and in section III we present computational results 
that evaluate the quality of these methods. Conclusions and 
possible avenues of future research are discussed in section 
IV. 

II. METHODOLOGY 

Our methodology was inspired by local spatial regression 
techniques. In spatial regression, the goal is the same as in a 
standard regression problem, that is, to predict one or several 
dependent variables using some explanatory variables. 
However, in spatial regression the observations of the 
dependent variable and explanatory variables take place at 
some geographic locations, and the relationship between the 
variables may vary among locations. In particular, our method 
uses a weighting scheme similar to one that has been used in 
Geographically Weighted Regression (GWR) ([14] and [15]). 
In this section, we first provide a brief description of GWR, 
and then we describe how we altered this approach to make it 
suitable for predicting the performance of GDPs. 

A. Geographically Weighted Regression 

In GWR, a separate regression model is fit for each 
geographic location of interest. Given observations of the 
explanatory variables in some location, a prediction of the 
dependent variable is produced by applying the regression 
model for that location. The regression model for a particular 
location is constructed under the assumption that observations 
that occurred at nearby locations are more relevant than 
observations that occurred at more distant locations. This is 
achieved by the following weighting scheme. Let there be 

some known distance measure d so that 
1 2( , )d l l gives the 

distances between locations 
1l  and 

2l . Then, a function k, 

known as the kernel, is chosen. The kernel takes a distance as 
an input and returns a weighting between zero and one, where 
higher distances are given a lower weight and smaller 
distances are given a higher weight. A typical choice for this 
function would be a Gaussian kernel,  
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Here,  is a tunable parameter, which is known as the 
bandwidth. The kernel is used to assign a weight to each 

observation. Let pl  be the location where the prediction will 

be made, and let 
il  be the location of the ith observation. Then 

the weight assigned to the ith observation is given by 
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In GWR, regression models are built by using these weights in 
weighted least-squares linear regression, but any regression 
technique that admits the use of sample weights can be 
converted into a spatial regression technique by applying this 
weighting scheme.  

In order to implement this method, the bandwidth 
parameter must be given a value. If a low value is chosen, then 

nearby observations are given much higher weight than further 
observations. As the bandwidth increases, then the assigned 
weights become more even, with all weights approaching one 
as the bandwidth approaches infinity. Thus, smaller bandwidth 
values lead to more localized regression models, while higher 
values lead to more global regression models. 

B. Weighting Observations for GDP Performance Prediction 

We approached the problem of predicting the performance 
of a planned GDP similarly to a spatial regression problem. 
Our explanatory variables describe the planned GDP and our 
independent variables are measures of the performance of the 
GDP, such as cancellations and average arrival delay over the 
day. Our observations do not vary in their geographic origin. 
All of the GDPs are assumed to have been run at one airport, 
and the observed performance measures are specific to that 
airport. However, each observed GDP was implemented in 
response to some weather and traffic conditions. These 
conditions could include the weather present at the time the 
GDP was being planned, as well as the weather forecasts, the 
traffic present in the system, and the forecast demand at that 
time. The weather and traffic conditions present when the 
GDP was being planned serve the same role that the 
geographic location serves in a typical spatial regression 
problem. That is, the weather and traffic conditions affect the 
relationship between GDP parameters and the performance of 
the GDP, and conditions that are “closer” to those associated 
with the subject GDP have more impact than those that are 
“farther away”. In order to provide predicted performance of 
different GDP parameters in some weather and traffic 
conditions, we fit a regression model for those specific 
weather and traffic conditions.  

We applied the same weighting scheme as in GWR, so 
historical observations that took place under similar weather 
and traffic conditions received higher weight and those that 
took place under dissimilar weather and traffic conditions 
received lower weight. This required a measure of distance 
between sets of weather and traffic conditions. We used a 
distance measure that is under development as part of an 
ongoing project ([16] and [17]). Demand and terminal weather 
features were used to estimate the distribution of capacity at 
the airport. Then, the distance measure between each pair of 
days was produced by comparing the estimated capacity 
distributions for those days. Weights for the observations were 
produced using a Gaussian kernel as described in Section II.A. 
The demand and weather features used in the construction of 
this distance measure are real observations that were recorded 
on the corresponding day. These features would not be 
available for the current day. In practice, the distances used by 
this method should be produced by comparing forecast 
weather and traffic conditions on the current day with a 
combination of forecast and actual conditions in previous 
days. We leave the problem of producing such a distance 
measure as an avenue of future research. 

A natural alternative approach would be to build a 
regression model that includes variables describing the GDP 
as well as variables describing the weather and traffic 
conditions. There are advantages and disadvantages to either 
approach. The largest disadvantage to our approach is that a 
model must be fit for each set of weather and traffic 



conditions. This means that it will be much more 
computationally expensive to use our approach if performance 
estimates are desired in a large variety of weather and traffic 
conditions. On the other hand, if the goal is to produce 
performance estimates for many different GDP choices under 
a single set of weather and traffic conditions, then our method 
will not cause any additional computational burden. In the 
global approach, the objective is to minimize a total loss 
function over all observations. This can result in a model that 
fits some locations better than others, especially if the 
relationship between GDP variables and the performance 
changes greatly in different weather and traffic conditions. In 
our approach, we form a regression model specifically for the 
location of interest, so this is not as much of a problem. 
Indeed, existing research suggests that GWR produces 
residuals that are more even in magnitude across geographic 
locations as compared to several other regression techniques, 
including ordinary least squares and two types of neural 
network models [18].  

C. Loss Functions in Regression and Quantile Regression 

For some observed dependent variable y and some 

prediction ŷ  a loss function is a function that takes a 

predicted value and an actual value as inputs and whose output 
is a number representing a penalty for misestimating the value. 

Typical loss functions include squared error  
2

ŷ y  or 

absolute error ŷ y . These functions are used to evaluate the 

quality of the predictions made by a regression model. 

We chose to use absolute error as the loss function for 
estimates of GDP performance because this leads to models 
that are more robust to outliers, and the loss function is in the 
same scale as the original data. Appropriate choice of loss 
function can also provide a way to estimate quantiles of the 
dependent variable. It is known that the loss function f defined 
by  
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is minimized when ŷ  is equal to the α-quantile of y. Thus, a 

regression method that attempts to minimize this loss function 
will provide an estimate of the α-quantile of the dependent 
variable. This is the basis of quantile linear regression [19], 
and any regression that admits a flexible loss function can 
make use of this observation to provide quantile estimates. 

D. Forest Methods with a Spatial Weighting Scheme 

We propose two methods that involve applying the 
weighting scheme described in section II.A to an existing 
regression method. The regression methods that we used are 
Random Forest and Gradient-Boosted Forest, both of which 
provide predictions using a collection of decision trees. 
Decision trees are rooted binary trees, so each node has either 
two children or no children. A node with no children is called 
a leaf node. Each non-leaf node has an associated rule, which 
can be expressed in the form ‘x < a’ where x is an explanatory 
variable and a is a constant. Each leaf node has an associated 
predicted value for the dependent variable. For an observation 
of the explanatory variables, a prediction is produced in the 
following manner. At each node, if the observation satisfies 

the rule then the next node to be examined will be the left 
child. Otherwise, the next node will be the right child. This 
continues until a leaf node is reached, at which point the 
prediction is given by the value associated with that node. 
Decision trees are usually constructed in an iterative 
procedure, which begins with a single root node with no 
children. In each iteration, one leaf node is chosen and is 
‘split’, which means that it is given two children and an 
associated rule. This proceeds until a stopping condition is 
met, at which time a ‘pruning’ procedure may be employed to 
remove some branches from the tree to simplify the tree and 
prevent overfitting. One well-known such procedure is 
described in [20]. 

The Random Forest regression method was introduced in 
[21], and is a method that builds a forest of decision trees. 
Each decision tree is built independently of all other trees, and 
randomness is introduced into the fitting procedure in order to 
decrease the correlation between the predictions of the trees in 
the forest. This in turn reduces the variance of the predictions. 
Random Forest techniques already allow the use of weighting 
of sample observations. This has previously been used to 
improve the performance of the method for classification 
problems in which some classes of data appear much more 
often than other classes [22]. The weights of the observations 
are incorporated in the splitting criteria in the formation of the 
tree and in the resulting predictions once the forests have been 
formed.  

The Gradient-Boosted Forest method builds a collection of 
decision trees iteratively. Each new tree is fit in a way that 
attempts to correct the errors of the previous tree. This is 
accomplished by fitting the new tree to the gradient of the loss 
function. This improvement procedure, known as gradient 
boosting and introduced in [23], is analogous to the gradient 
descent method in continuous optimization. In a similar 
manner to the Random Forest method, weights on sample 
observations can be added to Gradient-Boosted Forests by 
including these weights in the splitting criteria for each tree, 
and in the predictions produced by each tree. In Gradient-
Boosted Forest methods, the weights can also be incorporated 
directly into the loss function. Since Gradient-Boosted Forests 
support any loss function, this method can be applied to the 
problem of estimating quantiles with no modifications. The 
Random Forest method cannot be applied to arbitrary loss 
functions without developing new methods for fitting the 
trees, so we omitted the Random Forest method when we 
estimated quantiles. For both methods, we used the 

implementation in the Python scikit-learn package. 
There are many resources that explain the Random Forest and 
Gradient-Boosted Forest methods in more detail. See for 
example [24], [25] or [26]. 

E. Baseline Methods 

We used two additional methods to establish a baseline 
that we could compare to our proposed methods. The first 
baseline method estimates the performance of a GDP in some 
weather and traffic conditions by taking a weighted average of 
all the historical observations. Observations that were similar 
to the GDP and that occurred in similar weather and traffic 



conditions received higher weights than observations that were 
dissimilar in either aspect.  

We used a measure of distance that is similar to the one 
that we used for the spatial Random Forest and Gradient-
Boosted Tree models, but that considers GDP features along 
with the traffic and weather conditions. Again, we used a 
Gaussian kernel to convert these distances into weights. The 
resulting prediction is given by taking the weighted average of 

the observations 
1
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Our second baseline method was a k-nearest neighbors 
method. For a GDP in some weather and traffic conditions, the 
prediction for this method is the average of the k closest 
observations. We used the same distance measure here that 
was used for the weighted average method. 

 
These baseline methods required some slight modifications 

to produce estimates of quantiles rather than estimates of 
expected values. In this case, we took a weighted quantile 
instead of taking a weighted average. For the quantile α, this 
would be 
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For a large quantile α, then the maximum of the k nearest 
neighbors can be used as a baseline rather than the average of 
the k nearest neighbors. Alternatively, if one were interested in 
estimating a low quantile α, the minimum of the k nearest 
neighbors could serve as a baseline. We were more interested 
in worst-case performance than best-case performance, so we 
only implemented the maximum k-nearest neighbors method. 

F. Choice of Explanatory Variables 

The relevant variables chosen in the planning of a GDP 
have been discussed in [27] and [28]. Our choice of 
explanatory variables was mostly consistent with these 
previous works, although the exact variables we used are 
slightly different because those authors made stronger 
simplifying assumptions than we did. We used three variables 
that determine when the GDP takes place: 

• Entry Time: the time that the GDP was declared and 
put into effect. This was measured in minutes after 
4:00 a.m. local time. 

• Earliest ETA: the earliest arrival time for flights that 
were controlled by the GDP, measured in minutes 
after 4:00 a.m. local time.  

• Duration: the difference in time between the earliest 
and latest arrival times that were controlled by the 
GDP, measured in minutes. 

There were several variables that determine how severe the 
GDP is: 

• AAR in time period t: For each fifteen minute time 
period t starting at 4:00 a.m. local time, we recorded 
the planned AAR if this time period was included 
within the time period in which the GDP was planned 
to be in effect. If not, this field was left undefined. 
All of the regression methods that we considered can 

handle fields with missing values, so there was no 
need to define this field in time periods when the 
GDP was not active. 

• Average AAR: the average of the AARs in the time 
interval that the GDP was defined. 

The scope, or geographic area controlled by the GDP, can 
either be described by a set of pre-defined geographic regions 
or by a radius surrounding the affected airport. A scope 
defined by a certain set of pre-defined geographic regions 
would be similar to some choice of radius. Ideally, the 
variables should be chosen so that our regression models 
would treat these scopes similarly. With this intent, we defined 
a variable, 

• Number of Core 30 airports: the number of core 30 
airports that fell within the scope of the GDP. 

The Core 30 airports are a set of 30 airports that the 
Federal Aviation Administration has identified as those having 
the largest volume of traffic. This variable gives a measure of 
the magnitude of the scope of the GDP that is valid for either 
manner of representing the scope. Occasionally, there may be 
a ground stop immediately preceding the implementation of a 
ground delay program. In these cases, we included a feature: 

• Ground Stop Duration: the duration of the ground 
stop that led into the GDP, in minutes. If there was no 
such ground stop, then we defined this field to be 
zero. 

All of these explanatory variables were taken from 
National Traffic Management Log (NTML) data. We 
considered two dependent variables. The first was the average 
gate delay of arriving and departing flights, which was taken 
from the FAA’s Aviation System Performance Metrics 
(ASPM) database. The second was the number of flights that 
were scheduled to arrive but were cancelled, which was taken 
from the NASA/FAA Performance Data Analysis and 
Reporting System (PDARS) database. We estimated the 
expected value of these variables, which is the usual goal in 
regression. However, there is generally uncertainty in weather 
and traffic conditions, and there are some variables that we 
have not included such as the response taken by the airlines. 
We expect that if the same GDP were to be implemented 
multiple times in similar traffic and weather conditions then 
the resulting performance may vary significantly. For this 
reason, it would also be useful to provide some estimate of the 
range of performance that may be expected from the GDP. An 
upper bound for the delay and cancellations would be more 
useful than a lower bound, as decision-makers generally 
would like to avoid GDPs that could result in very poor 
performance. Therefore, we estimated the 90% quantiles of 
these variables. 

G. Parameter Tuning Procedure 

The Random Forest and Gradient-Boosted Forest methods 
each have parameters that require tuning. For the Random 
Forest method, the only parameter that we tuned was the 
number of trees in the forest and the remaining parameters we 

left to the defaults as implemented in the Python scikit-

learn package. For the Gradient-Boosted Forest methods, 
we tuned the number of trees in the forest, the maximum depth 



of the tree, and the learning rate. Our proposed spatial variants 
of the Random Forest and Gradient-Boosted Forest also 
require a choice of bandwidth, as described in section II.A. 
The bandwidth must also be chosen for the weighted average 
baseline method. The k-nearest neighbors method requires a 
choice for the value of k, i.e, the number of neighbors used to 
create the prediction.  

Our criteria for choosing these parameters was the average 
leave-one-out loss. That is, we fit the model to the data set 
with one observation (xi, yi) excluded. We used the resulting 
model to provide a prediction ŷi for the dependent variable yi 
given the observation xi of the explanatory variables. Then we 
calculated the value of the loss function for the prediction and 
the actual value. This procedure was repeated for each 
observation in the training set, and the loss was averaged. We 
considered one choice of parameters to be better than another 
if the former produced a lower average leave-one-out loss. 

In order to reduce the computational burden, we first tuned 
the number of trees in a Random Forest model that attempts to 
predict performance measures from the GDP features without 
using information about weather or traffic states. We will refer 
to this model as the global Random Forest model. We 
assumed that a choice of parameters that works well for this 
model would also work well for the spatial Random Forest 
model. Similarly, we tuned the parameters of a global 
Gradient-Boosted Forest model and assumed that this choice 
of parameters would also work well for the spatial Gradient-
Boosted Forest model. A Random Forest model does not tend 
to overfit as the number of trees increases. As the number of 
trees increases the average leave-one-out loss tends to 
decrease, but the marginal benefit of adding another tree 
becomes increasingly small. We therefore plotted the average 
leave-one-out loss against the number of trees, and chose a 
number of trees where the plot appears to become flat. For the 
Gradient-Boosted Forest, we performed a grid search to 
choose the best number of parameters. We allowed five 
different values of the learning rate, specifically 0.2, 0.1, 0.05, 
0.01 and 0.005, we allowed maximum tree depth to take each 
value between 2 and 7 and we allowed the number of trees to 
take any value between 1 and 300. The average leave-one-out 
loss was calculated for each choice of these parameters and we 
kept the set of parameters with the lowest average leave-one-
out loss.  

TABLE 1. RESULTS FROM ESTIMATION OF EXPECTED VALUE OF 

AVERAGE DELAY. 

Method 
Avg. 

Error 
Improvement Over 
Unweighted Avg. 

Unweighted Average 16.982    0.0% 

Weighted Average 12.865 -24.2% 

Average of k-Nearest Neighbors 14.139 -16.7% 

Global Random Forest 11.759 -30.8% 

Spatial Random Forest 11.612 -31.6% 

Global Gradient-Boosted Forest 12.471 -26.6% 

Spatial Gradient-Boosted Forest 12.381 -27.1% 

 
 

After the parameters were tuned for the global models, we 
tuned the bandwidth for the spatial model. We calculated the 
leave-one-out loss for each bandwidth between 0.3 and 10 in 
increments of 0.05, and we selected the bandwidth that 
produces the lowest average leave-one-out loss. The 
bandwidth for the weighted average model was chosen in the 
same manner. For the k-nearest neighbors model, we 
computed the average leave-one-out loss for each value of k 
between 1 and 100, and we took the choice k that produced the 
smallest value. 

III. COMPUTATIONAL RESULTS 

Our dataset consisted of 369 days on which GDPs were 
planned at Newark Liberty International Airport. These days 
occurred between April 2011 and October 2014. We randomly 
selected 80% of the days (296 days) to form a training set, 
while the remaining days (73 days) were used for the test set. 
We estimated the expected value and 90% quantiles of 
average gate delay across the day, and the same metrics of the 
number of cancellations. In each case, the parameters for the 
models were chosen using the procedure described in section 
II.F. For each model, we used the training set observations to 
produce predictions for the test set and we calculated the 
average loss for the test set. For the expected values of the 
dependent variables, we used the average absolute error, while 
for the 90% quantiles we used the quantile loss function as 
described in section II.C. In addition to the proposed models 
and baseline models described in section II.D, we show the 
performance of the global Random Forest model and global 
Gradient-Boosted Forest model, which do not make use of 
weather or traffic information. We also show the loss that 
resulted from using the unweighted average of the dependent 
variable as the estimate for that variable regardless of the 
choice of explanatory features. The results for the estimation 
of the expected value of average delay are shown in Table 1. 

 

Figure 1.  Actual delays vs. predicted delays from spatial Random Forest. 
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Figure 2.  Actual delays vs. predicted delays from spatial Gradient Boosted 

Forest. 

The methods that performed the best were the two variants 
of the Random Forest method, followed by the two Gradient 
Forest methods. The plots of predicted versus actual values for 
the spatial Random Forest and spatial Gradient-Boosted Forest 
methods are shown in Fig. 1. and Fig. 2., respectively. From 
these plots, it seems that the spatial Gradient-Boosted Forest 
was more accurate when the average delay was less than 25 
minutes but the spatial Random Forest model was more 
accurate for higher levels of delay. In general, the variant of 
each method that included weather and traffic information 
outperformed the variants that did not. However, the spatial 
Random Forest and spatial Gradient-Boosted Forest methods 
only slightly outperformed their global variants. This may 
indicate that the relationship between GDP parameters and 
delays does not change greatly in different weather and traffic 
conditions. 

The results from the estimation of the 90% quantile of 
average delay are shown in Table 2. Both variants of the 
Gradient-Boosted Forest method again outperformed the 
baseline methods, and the spatial model had almost exactly the 
same performance as the global model. The improvement of 
the Gradient-Boosted Forest model over the baseline models 
was much more pronounced in the estimation of the 90% 
quantile, as the best baseline method produced nearly twice 
the average loss than the Gradient-Boosted Forest models did. 

TABLE 2. RESULTS FROM ESTIMATION OF 90% QUANTILE OF 

AVERAGE DELAY 

Method 
Average 

Loss 

Improvement Over 
Unweighted 

Average 

Unweighted Quantile 8.589    0.0% 

Weighted Quantile 7.044   -18.0% 

Maximum of k-Nearest 
Neighbors 

6.255 -27.2% 

Global Gradient-Boosted Forest  3.356 -60.9% 

Spatial Gradient-Boosted Forest 3.391 -60.5% 

The results for the estimation of the expected value of the 
cancelled arrivals are shown in Table 3. This time, the spatial 
Gradient-Boosted Forest method had the best performance, 
while the spatial Random Forest had the second-best 
performance. In contrast to the previous results, the spatial 
methods showed significant gains as compared to their 
respective global versions. 

TABLE 3. RESULTS FROM ESTIMATION OF EXPECTED VALUE OF 

CANCELLED ARRIVALS. 

Method Avg. Error 

Improvement 
Over 

Unweighted Avg. 

Unweighted Average 16.381    0.0% 

Weighted Average 10.511 -35.8% 

Average of k-Nearest Neighbors 13.297 -18.8% 

Global Random Forest 10.924 -33.3% 

Spatial Random Forest   9.310 -43.2% 

Global Gradient-Boosted Forest  10.437 -36.3% 

Spatial Gradient-Boosted Forest   8.443 -48.5% 

Table 4 shows results from estimating the 90% quantile of 
the cancelled arrivals. Similarly to the results for average 
delay, the Gradient-Boosted Forest methods greatly 
outperformed the baseline models, and the improvement is 
much greater than in the estimation of expected cancelled 
arrivals. The global method performed slightly better than the 
spatial method. This could indicate that the spatial model is 
over-fitting, although the difference is slight enough that it 
could simply be sampling error. 

TABLE 4. RESULTS FROM ESTIMATION OF 90% QUANTILE OF 

CANCELLED ARRIVALS 

Method 
Avg. 

Error 

Improvement 
Over Unweighted 

Avg. 

Unweighted Quantile 9.164     0.0% 

Weighted Quantile 7.800 -14.9% 

Maximum of k-Nearest Neighbors 6.892 -24.7% 

Global Gradient-Boosted Forest  3.488 -61.9% 

Spatial Gradient-Boosted Forest 3.697 -60.0% 

Overall, the spatial Gradient-Boosted Forest and spatial 
Random Forest methods both seem to be viable models for 
estimating expected values of the dependent variables, 
outperforming all of the baseline models in all tests. For 
quantile estimates, the Gradient-Boosted Forest models also 
performed much better than the baseline methods, although 
the spatial model performed very slightly worse than the 
global model. 

IV. CONCLUSIONS 

We presented methods for predicting how well a GDP will 
perform in some given weather and traffic conditions. Our 
methods are based on spatial regression techniques, where a 
regression model is fit for each set of weather and traffic 
conditions. The explanatory variables consisted of GDP 
features, while our dependent variables were the average delay 
and the number of cancelled arrivals. These models were 
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compared against each other and against baseline methods. 
Both of our proposed methods outperformed all of the baseline 
methods. The spatial Random Forest method performed better 
than the Gradient Boosted method when predicting the 
expected value of average delay, while the reverse was true 
when predicting the expected number of cancelled arrivals.  

We observed from our tests that the methods that used 
information about the weather and traffic did not seem to 
predict the expected value of delay much better than the 
methods that did not use this information. Furthermore, in the 
estimation of quantiles of the dependent variables, the 
proposed methods that used the weather and traffic 
information performed very slightly worse than the variants 
that did not use this information. This could indicate that these 
values depend highly on the GDP and not as much as on the 
weather and traffic. This would have implications for the 
planning of GDPs. On the other hand, this could indicate that 
there is room for improvement in our methods. Either way, it 
would be of value to determine exactly why this occurs.  

In our tests, we predicted average delays and cancelled 
arrivals separately. In practice, there is likely a relationship 
between these dependent variables. Cancelled flights do not 
contribute to the delay measure, and in fact a reasonable 
expectation of high delay can be a good reason to cancel a 
flight. Thus, we expect that higher cancellations would 
coincide with lower average delays. Further work could 
produce methods that estimate trade-offs between several 
measures of delay performance. This could either be presented 
to decision-makers to help them make decisions directly, or 
this could be included in a GDP-planning procedure such as 
the one described in [12] and [13]. 

We only estimated the performance of the initial GDP 
plan. In practice, it is sometimes beneficial to revise a GDP 
after traffic and weather has developed. Our methods could be 
extended to estimate the performance of proposed revisions. 
As with the initial GDP plan, this could be presented to 
decision-makers to help them plan revisions, or could be 
incorporated into an automated tool for GDP planning. 
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